Study on Mechanical Automation with Cool-Starting Capacity of the Battery for Vehicles

2013 ◽  
Vol 738 ◽  
pp. 182-185
Author(s):  
Zheng Sheng Lu

It is advanced that cool-starting capacity of the battery is the key factor that affects the cool-starting performance of diesel engine. Cool-starting capacity of the battery is mainly affected by these factors,such as, the structure of the polar board, discharge electric current, temperature and density of the electrolyte. By optimally calculating the parameters above, optimal performance parameters of diesel engine at low temperature are received. Two performance tests of the diesel engine at low temperature,both Cool-Starting torque and starting rotate speed,are made on the basis of the cool-starting system of diesel engine,which completely satisfy the cool-starting requirements of the diesel engine at low temperature.

Desalination ◽  
2017 ◽  
Vol 404 ◽  
pp. 112-120 ◽  
Author(s):  
Fengming Zhang ◽  
Shiming Xu ◽  
Dongdong Feng ◽  
Shunquan Chen ◽  
Ruxu Du ◽  
...  

2021 ◽  
Vol 13 (11) ◽  
pp. 6482
Author(s):  
Sergejus Lebedevas ◽  
Laurencas Raslavičius

A study conducted on the high-speed diesel engine (bore/stroke: 79.5/95.5 mm; 66 kW) running with microalgae oil (MAO100) and diesel fuel (D100) showed that, based on Wibe parameters (m and φz), the difference in numerical values of combustion characteristics was ~10% and, in turn, resulted in close energy efficiency indicators (ηi) for both fuels and the possibility to enhance the NOx-smoke opacity trade-off. A comparative analysis by mathematical modeling of energy and traction characteristics for the universal multi-purpose diesel engine CAT 3512B HB-SC (1200 kW, 1800 min−1) confirmed the earlier assumption: at the regimes of external speed characteristics, the difference in Pme and ηi for MAO100 and D100 did not exceeded 0.7–2.0% and 2–4%, respectively. With the refinement and development of the interim concept, the model led to the prognostic evaluation of the suitability of MAO100 as fuel for the FPT Industrial Cursor 13 engine (353 kW, 6-cylinders, common-rail) family. For the selected value of the indicated efficiency ηi = 0.48–0.49, two different combinations of φz and m parameters (φz = 60–70 degCA, m = 0.5 and φz = 60 degCA, m = 1) may be practically realized to achieve the desirable level of maximum combustion pressure Pmax = 130–150 bar (at α~2.0). When switching from diesel to MAO100, it is expected that the ηi will drop by 2–3%, however, an existing reserve in Pmax that comprises 5–7% will open up room for further optimization of energy efficiency and emission indicators.


Materials ◽  
2021 ◽  
Vol 14 (3) ◽  
pp. 474
Author(s):  
Huaqiao Liu ◽  
Yiren Pan ◽  
Huiguang Bian ◽  
Chuansheng Wang

In this study, the two key factors affecting the thermal performance of the insert rubber and stress distribution on the tire sidewall were analyzed extensively through various performance tests and simulations to promote the development of run-flat tires. Four compounds and two structures of insert rubber were designed to investigate the effects of heat accumulation and stress distribution on durability testing at zero pressure. It was concluded that the rigidity and tensile strength of the compound were negatively correlated with temperature. The deformation was a key factor that affects energy loss, which could not be judged solely by the loss factor. The stress distribution, however, should be considered in order to avoid early damage of the tire caused by stress concentration. On the whole, the careful balance of mechanical strength, energy loss, and structural rigidity was the key to the optimal development of run-flat tires. More importantly, the successful implementation of the simulations in the study provided important and useful guidance for run-flat tire development.


Catalysts ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 641
Author(s):  
Lukasz Wolski ◽  
Grzegorz Nowaczyk ◽  
Stefan Jurga ◽  
Maria Ziolek

The aim of the study was to establish the influence of a co-precipitation agent (i.e., NaOH–immediate precipitation; hexamethylenetetramine/urea–gradual precipitation and growth of nanostructures) on the properties and catalytic activity of as-synthesized Au-CeO2 nanocomposites. All catalysts were fully characterized with the use of XRD, nitrogen physisorption, ICP-OES, SEM, HR-TEM, UV-vis, XPS, and tested in low-temperature oxidation of benzyl alcohol as a model oxidation reaction. The results obtained in this study indicated that the type of co-precipitation agent has a significant impact on the growth of gold species. Immediate co-precipitation of Au-CeO2 nanostructures with the use of NaOH allowed obtainment of considerably smaller and more homogeneous in size gold nanoparticles than those formed by gradual co-precipitation and growth of Au-CeO2 nanostructures in the presence of hexamethylenetetramine or urea. In the catalytic tests, it was established that the key factor promoting high activity in low-temperature oxidation of benzyl alcohol was size of gold nanoparticles. The highest conversion of the alcohol was observed for the catalyst containing the smallest Au particle size (i.e., Au-CeO2 nanocomposite prepared with the use of NaOH as a co-precipitation agent).


2013 ◽  
Vol 275-277 ◽  
pp. 429-432 ◽  
Author(s):  
Yu Qiang Cai ◽  
Na Xing

Abstract. Magnetic fluid revolving sealing is widely used in modern industry. In the process of application, it is founded that the starting friction torque is very large, particularly at lower temperature. This problem has become a key factor restricting the application of magnetic fluid rotation sealing. In this paper, the mechanism of starting torque increase is analyzed, based on the change of microstructure and its viscosity. After analysis , such conclusion is obtained , which can be described: to a certain sealing structure, the type of magnetic fluid, size distribution of magnetic particles as well as the working condition concluding temperature, magnetic field gradient and the revolving velocity of shaft is the main influence factor of starting friction torque . It is very useful to reduce the starting friction torque.


Sign in / Sign up

Export Citation Format

Share Document