Structure and Properties of CNT-PbO2 Anodes on Stainless Steel

2013 ◽  
Vol 743 ◽  
pp. 218-222 ◽  
Author(s):  
Yue Hai Song ◽  
Li Jie Ma

An ideal anodes used for the electrochemical oxidation of organic wastewater should have excellent activity, stability and high oxygen evolution potential. In this paper the CNT (Carbon Nanotubes)-PbO2 films electrodeposited on stainless steel were prepared. X-ray diffraction (XRD) patterns and SEM images indicated that CNT particles and PbO2 were able to achieve co-deposit and the composite CNT-PbO2 films were compact. The cyclic voltammograms of the CNT-PbO2 films studied in 0.5M H2SO4 at a scan rate of 100 mV/s showed that the CNT-PbO2 film has high electrochemical stability. The results of wastewater treatment indicated that the CNT-PbO2 anodes have excellent activity in ammonia wastewater treatment.

2021 ◽  
Vol 12 (4) ◽  
pp. 2523-2529
Author(s):  
Daniel Sam N ◽  
Anish C I ◽  
Sabeena G ◽  
Rajaduraipandian S ◽  
Manobala ◽  
...  

Sol gel methods were used for the study of the antimicrobial activity of Cd-TiO2 against gram-negative and positive bacteria. These Cd-TiO2 have been characterized by various optical and techniques. They have been exhibited by X-ray diffraction, scanning electron microscopy, ultraviolet spectroscopy, and infrared spectroscopy. The structures of the various XRD patterns indicate that the product has a structure. The particle size of Cd-TiO2 is 35nm. The SEM images confirm the spherical appearance of the sample. The energy X-ray spectra have been confirmed as well and then C, O, Ti, Cd, Pt element are present in Cd-TiO2. The weight percentage of Cadmium is 5.8%, Ti is 51.03%, C is 5.13% and O is 31.75% in Cd-TiO2. BET image shows that the major pore size distribution of Cd-TiO2 is ranged from 2.24 nm. The Cd-TiO2 that the antibacterial activity when tested against the pathogens only gram-negative bacteria such as Pseudomonas. The zone of minimum inhibition concentration was measured in a range of 20mm in 25μl and 30mm in 100μl.


2017 ◽  
Vol 751 ◽  
pp. 825-830 ◽  
Author(s):  
Phuri Kalnaowakul ◽  
Tonghathai Phairatana ◽  
Aphichart Rodchanarowan

In this study, the photocatalytic properties and morphology of TiO2, ZnO, Ag-graphene-zinc oxide (Ag-G-ZnO) and Ag-graphene-titanium dioxide (Ag-G-TiO2) nanocomposite were compared. The Ag-G-ZnO and Ag-G-TiO2 nanocomposite were successfully prepared by thermal decomposition of colloidal solution. These prepared composites were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), UV-Vis spectroscopy and photocatalytic activities. The results from XRD patterns show that Ag-G-TiO2 composites and the Ag-G-ZnO nanocomposites were in the form of fcc and hcp crystal structure, respectively. The SEM images show that at calcination of 500 °C for 3 h, the composite thin film of Ag-G-ZnO and Ag-G-TiO2 were homogenous. In the case of the photocatalytic experiments using methylene blue dye (MB) under UV irradiation, the order of the photocatalytic activities from high to low performances are Ag-G-ZnO, Ag-G-TiO2, ZnO and TiO2, respectively.


2016 ◽  
Vol 16 (4) ◽  
pp. 3857-3860 ◽  
Author(s):  
Siling Guo ◽  
Chunyan Cao ◽  
Renping Cao

Through a hydrothermal method, 1 mol% Eu3+ doped NaYF4 and KYF4 micro/nanocrystals have been synthesized. The materials were characterized by X-ray diffraction (XRD) patterns, field emission scanning electron microscopy (FE-SEM) images, room temperature photoluminescence (PL) excitation and emission spectra, and luminescent dynamic decay curves. The XRD analysis suggested the crystalline structures of the obtained samples. The FE-SEM images indicated the morphology and size of the obtained samples. The PL spectra illustrate the optical properties of Eu3+ in the two samples. Since it is sensitive to the local environment of the ion, the Eu3+ presents different optical properties in the NaYF4 and KYF4 materials.


2021 ◽  
Vol 406 ◽  
pp. 219-228
Author(s):  
Ouahiba Herzallah ◽  
Hachemi Ben Temam ◽  
Asma Ababsa ◽  
Abderrahmane Gana

Ni–Co alloy coatings were electrodeposited at various cobalt amounts on pretreated steel substrates. The co-deposition phenomenon of Ni-Co alloys was described as anomalous behaviour. Different techniques including scanning electron microscopy (SEM), energy dispersive spectroscopy (EDX), X-ray diffraction (XRD) and potentiodynamic polarization were used to characterize the alloy coatings. EDX results showed that the Co content increase with the enhancing of Co amount. SEM images have shown that the increase of Co amount leads grain developing from large grain to branched grain form and that goes through spherical and pyramidal, this implies that the grain size of these alloy coatings is greatly affected by Co amount in the electrolyte baths. XRD patterns revealed that the phase structure of Ni–Co coatings is dramatically changed from fcc into hcp structure with the increase of Co amount. The electrochemical properties of Ni-Co alloy coatings evaluated in 3.5% NaCl solution reveal that Ni–34.32 wt.% Co alloy exhibits better corrosion resistance compared to pure Ni and other Ni–Co alloy coatings.


2012 ◽  
Vol 1449 ◽  
Author(s):  
Chen Zhao ◽  
Dan Jiang ◽  
Shundong Bu ◽  
Jinrong Cheng

ABSTRACTFerroelectric 0.7BiFeO3-0.3PbTiO3 (BFO-PT) films were deposited on stainless steel substrates by the sol-gel method. A thin layer of PbTiO3 (PT) was introduced between the substrates and BFO-PT films in order to decrease the annealing temperature of BFO-PT films. X-ray diffraction analysis reveals that BFO-PT films could be well crystallized into the perovskite structure at about 575 oC. Scanning electron microscope (SEM) images show that BFO-PT thin films have grain size of about 50∼60 nm. Our results indicated BFO-PT films deposited on stainless steel substrates maintained the excellent ferroelectric properties with remnant polarization of about 40∼50 μC/cm2.


2013 ◽  
Vol 634-638 ◽  
pp. 2261-2263
Author(s):  
Khun Ngern Supunnee ◽  
Vatcharinkorn Mekla ◽  
Eakkarach Raksasri

In this work optical properties of CuO nanostructure were studied. CuO nanostructure were synthesized by the hydrothermal treatment method. The structural and chemical natures of the obtained materials were studied using powder X-ray diffraction (XRD), scanning electron microscopy (SEM) and study optical properties by UV-visible spectral. The XRD patterns of the CuO nanostructures indicated that CuO phases (JCPDS 05- 0661). The top-view SEM images, it can be seen clearly that high-density, horizontally scattered nanorod were grown on the product prepared at concentration of NaOH (aq) 7.5 M at 180 C for 12 h. The spectral of UV-vis data recorded showed the strong cut off at 341 nm.


2014 ◽  
Vol 32 (3) ◽  
pp. 430-435 ◽  
Author(s):  
Arsia Khanfekr ◽  
Morteza Tamizifar ◽  
Rahim Naghizadeh

AbstractBaTi1−x NbxO3 compounds (with x = 0.0, 0.01, 0.03, 0.06, and 0.09) were synthesized by rotary-hydrothermal (RH) method. The process was conducted at 180 °C for 5 hours in a Teflon vessel that was rotated at a speed of 160 rpm during the hydrothermal reaction. The effects of donor concentration on the structure and properties of BaTi1−x NbxO3 compounds were investigated. The experiments for the BaTiO3±Nb2O3 system produced by a solid state reaction at high temperature at different concentrations of niobium, with the use of RH processing have not been reported in previous works. For the phase evolution studies, X-ray diffraction patterns (XRD) were analyzed and Raman spectroscopy measurements were performed. The transmission electron microscope (TEM) and the field emission scanning electron microscope (FE-SEM) images were taken for the detailed analysis of the grain size, surface and morphology of the compound.


2012 ◽  
Vol 518-523 ◽  
pp. 691-695
Author(s):  
Yan Li ◽  
Yong Liu ◽  
Shi Lin Zhao ◽  
Peng Juan Yuan ◽  
Lin Li

This study was conducted to investigate the effect of a catalytic ozonation system for the treatment of humic acid(HA) as simulated wastewater by use of the rare earth and transition metal complexing γ-Al2O3catalysts(RTCC) in aqueous solution at room temperature. In the reaction, HA was removed by the joint effect of ozonation and catalytic oxidation. Experimental results showed that the optimum technological conditions were calcination at 723 K, pH of 11 and 1:1 ratio (La (NO3)3/ Mn (NO3)2) for the preparation of RTCC. The ozonation with RTCC induced a significant degradation efficiency of HA in UV absorbance, as compared to ozone alone was 21.11% higher after 30 minutes reaction. The RTCC samples were measured by X-ray diffraction (XRD) patterns and scanning electron microscope (SEM) images.


2013 ◽  
Vol 669 ◽  
pp. 30-33
Author(s):  
Yue Cheng ◽  
Shun Long Pan ◽  
Yuan Zhou

Silicalite-2 zeolite was hydrothermally synthesized and Mn0.2Co0.8Fe2O4 magnetic nano-particle based on the Silicalite-2 zeolite carrier was prepared by a coprecipitation-impregnation method. The morphologies and microstructures of synthesized samples were characterized by X-ray diffraction (XRD), scanning electron microscope (SEM). The heterogeneous catalytic oxidation electrolysis system of Mn0.2Co0.8Fe2O4/silicalite-2 was built by dispersing the catalysts in glass reactor for treating cationic brilliant red X-5GN wastewater. The SEM images showed that the structure of silicalite-2 zeolite remained its original after the introduction of Mn0.2Co0.8Fe2O4 magnetic particle. The XRD patterns revealed that Mn0.2Co0.8Fe2O4 oxides could not be observed on the surface of the silicalite-2 zeolite carrier. The experimental results showed that the dye wastewater with a satisfied decolorization rate (79.1%) was obtained when the initial pH was 6, the magnetic catalyst dosage was 0.4g/L, the electrolysis voltage was 2V, electrolytic time was 45min, respectively.


2011 ◽  
Vol 284-286 ◽  
pp. 1408-1411
Author(s):  
Yan Li ◽  
Yan Jie Zhang ◽  
Rui Qing Chu ◽  
Zhi Jun Xu ◽  
Qian Chen ◽  
...  

La2O3-doped lead-free 0.82Bi0.5Na0.5TiO3-0.18Bi0.5K0.5TiO3(abbreviated to 0.82BNT-0.18BKT) piezoelectric ceramics were synthesized by the conventional mixed-oxide method, and the effect of La2O3addition on the dielectric and piezoelectric properties was investigated. X-ray diffraction (XRD) patterns show that La2O3diffuses into the lattice of the 0.82BNT-0.18BKT ceramics to form a solid solution with a pure perovskite structure. SEM images indicate that the grain size of the 0.82BNT-0.18BKT ceramics increased with the addition of La2O3doping. The electrical properties of 0.82BNT-0.18BKT ceramics have been greatly improved by certain amount of La2O3substitutions. At room temperature, the 0.82BNT-0.18BKT ceramics doped with 0.25 wt. % La2O3exhibited the optimum properties with high piezoelectric constant (d33= 142 pC/N) and high planar coupling factor (kp= 0.23).


Sign in / Sign up

Export Citation Format

Share Document