Photocatalytic Comparative Study of TiO2, ZnO, Ag-G-ZnO and Ag-G-TiO2 Nanocomposite Films

2017 ◽  
Vol 751 ◽  
pp. 825-830 ◽  
Author(s):  
Phuri Kalnaowakul ◽  
Tonghathai Phairatana ◽  
Aphichart Rodchanarowan

In this study, the photocatalytic properties and morphology of TiO2, ZnO, Ag-graphene-zinc oxide (Ag-G-ZnO) and Ag-graphene-titanium dioxide (Ag-G-TiO2) nanocomposite were compared. The Ag-G-ZnO and Ag-G-TiO2 nanocomposite were successfully prepared by thermal decomposition of colloidal solution. These prepared composites were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), UV-Vis spectroscopy and photocatalytic activities. The results from XRD patterns show that Ag-G-TiO2 composites and the Ag-G-ZnO nanocomposites were in the form of fcc and hcp crystal structure, respectively. The SEM images show that at calcination of 500 °C for 3 h, the composite thin film of Ag-G-ZnO and Ag-G-TiO2 were homogenous. In the case of the photocatalytic experiments using methylene blue dye (MB) under UV irradiation, the order of the photocatalytic activities from high to low performances are Ag-G-ZnO, Ag-G-TiO2, ZnO and TiO2, respectively.

2011 ◽  
Vol 110-116 ◽  
pp. 3755-3761
Author(s):  
Jian Sheng Xie ◽  
Jin Hua Li ◽  
Ping Luan

Using magnetron sputtering technology, the CuInSi nanocomposite thin films were prepared by magnetron co-sputtering method and multilayer synthesized method respectively,and followed by annealing in N2 atmosphere at different temperatures. The structure of CuInSi nanocomposite films were detected by X-ray diffraction (XRD); X-ray diffraction studies of the annealed films indicate the presence of CuInSi, the peak of main crystal phase is at about 2θ=42.308°,meanwhile,there are In2O3 peak and other peaks in the XRD patterns of films. The morphology of the film surface was studied by SEM. The SEM images show that the crystalline of the film prepared by multilayer synthesized method was granulated, But the crystalline of the film prepared by magnetron co-sputtering with needle shape. The grain size is a few hundred angstroms. The band gap has been estimated from the optical absorption studies and found to be about 1.40 eV for the sample by magnetron co-sputtering, and 1.45eV for the sample by multilayer synthesized, but all changes with the purity of CuInSi.


2011 ◽  
Vol 335-336 ◽  
pp. 1508-1511
Author(s):  
Shu Kai Zheng

Transparent TiO2 thin films were deposited onto microscope glass slides by means of d.c. magnetron sputtering method. In order to enhance the photocatalytic activity of TiO2 thin films, Mo ions with different nominal doses were implanted into the TiO2 thin films. The samples were characterized by different technologies including X-ray diffraction (XRD), X-ray photoelectron spectroscope (XPS) and UV-VIS-NIR spectrophotometer. The photodegradation results of methylene blue dye solution indicated that optimal dose of 2×1012ions/cm2 Mo ion-implantation resulted in a higher photocatalytic activity in the implanted TiO2 thin films.


2012 ◽  
Vol 31 (1) ◽  
pp. 79
Author(s):  
Khalil Faghihi ◽  
Masoumeh Soleimani ◽  
Shabnam Nezami ◽  
Meisam Shabanian

Two new samples of poly(amide-imide)-montmorillonite reinforced nanocomposites containing N-trimellitylimido-L-valine moiety in the main chain were synthesized by a convenient solution intercalation technique. Poly(amide-imide) (PAI) 5 as a source of polymer matrix was synthesized by the direct polycondensation reaction of N-trimellitylimido-L-valine (3) with 4,4′-diaminodiphenyl ether 4 in the presence of triphenyl phosphite (TPP), CaCl2, pyridine and N-methyl-2-pyrrolidone (NMP). Morphology and structure of the resulting PA-nanocomposite films (5a) and (5b) with 10 and 20 % silicate particles were characterized by FTIR spectroscopy, X-ray diffraction (XRD) and scanning electron microscopy (SEM). The effect of clay dispersion and the interaction between clay and polymeric chains on the properties of nanocomposite films were investigated by using Uv-vis spectroscopy,  thermogravimetric analysis (TGA) and water uptake measurements.


2021 ◽  
Vol 12 (4) ◽  
pp. 2523-2529
Author(s):  
Daniel Sam N ◽  
Anish C I ◽  
Sabeena G ◽  
Rajaduraipandian S ◽  
Manobala ◽  
...  

Sol gel methods were used for the study of the antimicrobial activity of Cd-TiO2 against gram-negative and positive bacteria. These Cd-TiO2 have been characterized by various optical and techniques. They have been exhibited by X-ray diffraction, scanning electron microscopy, ultraviolet spectroscopy, and infrared spectroscopy. The structures of the various XRD patterns indicate that the product has a structure. The particle size of Cd-TiO2 is 35nm. The SEM images confirm the spherical appearance of the sample. The energy X-ray spectra have been confirmed as well and then C, O, Ti, Cd, Pt element are present in Cd-TiO2. The weight percentage of Cadmium is 5.8%, Ti is 51.03%, C is 5.13% and O is 31.75% in Cd-TiO2. BET image shows that the major pore size distribution of Cd-TiO2 is ranged from 2.24 nm. The Cd-TiO2 that the antibacterial activity when tested against the pathogens only gram-negative bacteria such as Pseudomonas. The zone of minimum inhibition concentration was measured in a range of 20mm in 25μl and 30mm in 100μl.


2012 ◽  
Vol 545 ◽  
pp. 100-104 ◽  
Author(s):  
J. Podder ◽  
M.R Islam

ZnO and Zn1-xCdxO thin films have been deposited onto glass substrate using spray pyrolysis at 200°C. Cadmium-zinc alloy thin films have been prepared by taking different concentrations of cadmium (Cd). The elemental analysis and the surface morphology of the films were carried by the energy dispersive X-ray (EDX) and scanning electron microscopy (SEM). The EDX data show that the films are highly stoichiometric. The SEM images show that the film changes from nano fiber to grain with the increase of Cd concentrations. The X-ray diffraction pattern shows that the films are polycrystalline in nature. The crystal structure of the films changes from hexagonal-ZnO to cubic-CdO depending on the concentration of Zn and Cd in the Zn1-xCdxO films. The optical properties of these films were studied by UV-VIS spectroscopy. The optical band gap of the films was changed from 3.2 to 2.4 with the variation of cadmium.


2016 ◽  
Vol 16 (4) ◽  
pp. 3857-3860 ◽  
Author(s):  
Siling Guo ◽  
Chunyan Cao ◽  
Renping Cao

Through a hydrothermal method, 1 mol% Eu3+ doped NaYF4 and KYF4 micro/nanocrystals have been synthesized. The materials were characterized by X-ray diffraction (XRD) patterns, field emission scanning electron microscopy (FE-SEM) images, room temperature photoluminescence (PL) excitation and emission spectra, and luminescent dynamic decay curves. The XRD analysis suggested the crystalline structures of the obtained samples. The FE-SEM images indicated the morphology and size of the obtained samples. The PL spectra illustrate the optical properties of Eu3+ in the two samples. Since it is sensitive to the local environment of the ion, the Eu3+ presents different optical properties in the NaYF4 and KYF4 materials.


2010 ◽  
Vol 25 (4) ◽  
pp. 658-664 ◽  
Author(s):  
Chang-An Wang ◽  
Keyu Chen ◽  
Yong Huang ◽  
Huirong Le

Layer-structured polypyrrole/montmorillonite (PPy/MMT) naoncomposite films were synthesized by the electrodeposition method. The fabricated free-standing films consist of about 0∼2 wt% Na+-montmorillonite (NMMT). The thickness of films could be controlled by deposition time. X-ray diffraction (XRD) and scanning electron microscope (SEM) were used to observe the microstructure of the films. After MMT was introduced into the PPy matrix, the interspace between PPy chains decreased, according to the XRD results. The layered structure of the films was observed from the SEM images. Tensile and nanoindentation test results showed that the mechanical properties of the composite films were improved at low clay loading. The electrical conductivity of the films with 1.2 wt% MMT loading was increased from 3.6 to 51 S/cm, probably because of the restricted growth of PPy chains in the interspace of MMT layers.


Author(s):  
Sridharan Balu ◽  
Kasimayan Uma ◽  
Guan-Ting Pan ◽  
Thomas C.-K. Yang ◽  
Sayee Kannan Ramaraj

Semiconductor materials have been shown to have better photocatalytic behavior and can be utilized for the photodegradation of organic pollutants. In this work, three-dimensional flower-like SnS2 were synthesized by a facile hydrothermal method. Core-shell structured SiO2@α-Fe2O3 nanocomposites were then deposited on the top of the SnS2 flowers. The as-synthesized nanocomposites were characterized by X-ray diffraction (XRD), Raman spectroscopy, field emission scanning electron microscopy (FE-SEM), Brunauer-Emmett-Teller (BET) and photoluminescence spectroscopy (PL). The photocatalytic behavior of the SnS2-SiO2@α-Fe2O3 nanocomposites was observed by observing the degradation of methylene blue (MB). The results show an effective enhancement of photocatalytic activity for the degradation of MB especially for the 15 wt. % SiO2@α-Fe2O3 nanocomposites on SnS2 flowers.


2021 ◽  
Vol 406 ◽  
pp. 219-228
Author(s):  
Ouahiba Herzallah ◽  
Hachemi Ben Temam ◽  
Asma Ababsa ◽  
Abderrahmane Gana

Ni–Co alloy coatings were electrodeposited at various cobalt amounts on pretreated steel substrates. The co-deposition phenomenon of Ni-Co alloys was described as anomalous behaviour. Different techniques including scanning electron microscopy (SEM), energy dispersive spectroscopy (EDX), X-ray diffraction (XRD) and potentiodynamic polarization were used to characterize the alloy coatings. EDX results showed that the Co content increase with the enhancing of Co amount. SEM images have shown that the increase of Co amount leads grain developing from large grain to branched grain form and that goes through spherical and pyramidal, this implies that the grain size of these alloy coatings is greatly affected by Co amount in the electrolyte baths. XRD patterns revealed that the phase structure of Ni–Co coatings is dramatically changed from fcc into hcp structure with the increase of Co amount. The electrochemical properties of Ni-Co alloy coatings evaluated in 3.5% NaCl solution reveal that Ni–34.32 wt.% Co alloy exhibits better corrosion resistance compared to pure Ni and other Ni–Co alloy coatings.


2013 ◽  
Vol 743 ◽  
pp. 218-222 ◽  
Author(s):  
Yue Hai Song ◽  
Li Jie Ma

An ideal anodes used for the electrochemical oxidation of organic wastewater should have excellent activity, stability and high oxygen evolution potential. In this paper the CNT (Carbon Nanotubes)-PbO2 films electrodeposited on stainless steel were prepared. X-ray diffraction (XRD) patterns and SEM images indicated that CNT particles and PbO2 were able to achieve co-deposit and the composite CNT-PbO2 films were compact. The cyclic voltammograms of the CNT-PbO2 films studied in 0.5M H2SO4 at a scan rate of 100 mV/s showed that the CNT-PbO2 film has high electrochemical stability. The results of wastewater treatment indicated that the CNT-PbO2 anodes have excellent activity in ammonia wastewater treatment.


Sign in / Sign up

Export Citation Format

Share Document