The Characterization of a New Antibacterial Polyurethane

2013 ◽  
Vol 750-752 ◽  
pp. 1609-1612 ◽  
Author(s):  
Yang Ti ◽  
Jian Ru Wu ◽  
Da Jun Chen

In this paper, Fe-OCAP/PU blends were prepared. The mechanical properties and thermal stability of the samples were studied by tensile tests and thermogravimetric analysis, respectively. Results showed that the mechanical properties and thermal stability of the samples were improved with the increase of Fe-OCAP content. The antibacterial property of Fe-OCAP and Fe-OCAP/PU films was investigated by agar diifusion method and shake flask method, respectively. Fe-OCAP and Fe-OCAP/PU films showed efficient antibacterial activity againstS.aureus.

Polymers ◽  
2019 ◽  
Vol 11 (7) ◽  
pp. 1105 ◽  
Author(s):  
Palin ◽  
Rombolà ◽  
Milanesio ◽  
Boccaleri

Plasticized–Poly(vinyl chloride) (P-PVC) for cables and insulation requires performances related to outdoor, indoor and submarine contexts and reduction of noxious release of HCl-containing fumes in case of thermal degradation or fire. Introducing suitable nanomaterials in polymer-based nanocomposites can be an answer to this clue. In this work, an industry-compliant cable-grade P-PVC formulation was added with nanostructured materials belonging to the family of Polyhedral Oligomeric Silsesquioxane (POSS). The effects of the nanomaterials, alone and in synergy with HCl scavenging agents as zeolites and hydrotalcites, on the thermal stability and HCl evolution of P-PVC were deeply investigated by thermogravimetric analysis and reference ASTM methods. Moreover, hardness and mechanical properties were studied in order to highlight the effects of these additives in the perspective of final industrial uses. The data demonstrated relevant improvements in the thermal stability of the samples added with nanomaterials, already with concentrations of POSS down to 0.31 phr and interesting additive effects of POSS with zeolites and hydrotalcites for HCl release reduction without losing mechanical performances.


2018 ◽  
Vol 25 (5) ◽  
pp. 975-982 ◽  
Author(s):  
Alireza Khoshkbar Sadeghi ◽  
Maryam Farbodi

AbstractIn the present research, polyaniline is used as a conducting polymer and polyvinyl alcohol is also used as a biopolymer, because of its mechanical properties and suitable processability. Also, silver nanoparticles are considered as a reinforcing agent of thermal stability, mechanical and antibacterial properties to prepare polyaniline-polyvinyl alcohol-silver nanocomposite. The synthesis of polyaniline-polyvinyl alcohol composite and polyaniline-polyvinyl alcohol-silver nanocomposite is performed through addition of polyaniline and silver in polyvinyl alcohol solution. In order to review thermal, mechanical and antibacterial properties of synthesized composite and nanocomposites, components with different weight rates are used. The obtained results from thermogravimetric analysis (TGA) tests also indicate promotion of thermal stability of polyaniline-polyvinyl alcohol-silver nanocomposite compared with pure polyvinyl alcohol in temperatures above 400°C. The results of Fourier-transform infrared (FTIR) spectroscopy revealed the presence of polyaniline, polyvinyl alcohol and silver in the structure of polyaniline-polyvinyl alcohol-silver triple nanocomposite film. The obtained results from a review of antibacterial properties showed that polyaniline-polyvinyl alcohol-silver nanocomposites have antibacterial effects on two different types of Gram-positive and Gram-negative bacteria. The obtained results from a review of mechanical properties of nanocomposites showed that the greatest value of tensile strength (13.8 MPa) belonged to polyaniline-polyvinyl alcohol-silver (88%/9%/3% w/w) nanocomposites. Therefore, this is determined as an optimal triple nanocomposite. In addition, scanning electron microscopy (SEM) coupled with an energy dispersive X-ray (EDX) system was used to characterize the composition and structure of polyaniline-polyvinyl alcohol-silver nanocomposite film.


2012 ◽  
Vol 217-219 ◽  
pp. 551-554
Author(s):  
Ting Xi Li ◽  
Yu Hua Zhao ◽  
Qian Li ◽  
Cheng Qian Yuan ◽  
Quan Liang Chen ◽  
...  

Abstract. Polyaniline (PANI) and p-phenylenediamine (p-PDA)-aniline copolymer were prepared via a same microemulsion method. The structures of the PANI and p-PDA-aniline copolymer were characterized by infrared spectroscopy (FT-IR), X-ray diffraction (XRD), thermogravimetric analysis(TGA). The results revealed the difference of synthesis and characterization between PANI and p-PDA-aniline copolymer. It was shown that structure of the copolymer is almost similar to that of PANI, but the p-PDA-aniline copolymer has a better crystallization than PANI, and the thermal stability of the copolymer is higher than that of pure PANI.


2017 ◽  
Vol 16 (05n06) ◽  
pp. 1750012 ◽  
Author(s):  
Farhad Jahantigh ◽  
Mehdi Nazirzadeh

In this project, nanocomposite films were prepared with different Titanium dioxide (TiO2) percentages. Properties of polycarbonate (PC) and PC–TiO2nanocomposite films were studied by X-ray diffraction (XRD) analysis and Fourier transform infrared (FTIR) spectroscopy. The structure of samples was studied by XRD. The mechanical properties of PC–TiO2nanocomposite films were investigated by conducting tensile tests and hardness measurements. Thermal stability of the nanocomposites was studied by thermogravimetric analysis (TGA) method. The elastic modulus of the composite increased with increasing weight fraction of nanoparticles. The microhardness value increases with increasing TiO2nanoparticles. The results of tensile testing were in agreement with those of micro-hardness measurements. In addition, TGA curves showed that nanocomposite films have higher resistance to thermal degradation compared to polycarbonate. There are many reports related to the modification of polycarbonate films, but still a systematic study of them is required.


2015 ◽  
Vol 1718 ◽  
pp. 9-14
Author(s):  
Konstanze K. Julich-Gruner ◽  
Andreas Lendlein ◽  
Aldo R. Boccaccini ◽  
Axel T. Neffe

ABSTRACTFunctionalization of gelatin with desaminotyrosine (DAT) and desamino tyrosyl tyrosine (DATT) has been demonstrated to allow network formation based on non-covalent interactions of the aromatic moieties. Based on the observation that the DAT(T) groups furthermore could interact with hydroxyapatite fillers, here it was investigated whether such interactions of DAT(T) could also be employed to stabilize composites formed by functionalized gelatins and bioactive glass (BG) particles. Because of sedimentation of the BG microparticles during the gelification, anisotropic composites with two distinct layers were formed. The characterization of mechanical properties by tensile tests and rheology showed that all composites of non-functionalized and DAT(T) functionalized gelatins with BG microparticles showed an increased Young’s modulus (E) up to 3 MPa, an increased storage modulus (G’) up to 100 kPa, increased tensile strength (σmax) up to 3.4 MPa, and increased loss modulus (G’’) compared to the pure matrices. As the observed effects were more pronounced in the DAT(T) functionalized gelatins compared to non-functionalized gelatins, and a much increased thermal stability of these composites was found, it is likely that there are binding interactions between the aromatic moieties and the BG microparticles. This effect open opportunities for the further development of this type of gelatin-based composites for bone regeneration applications.


1996 ◽  
Vol 8 (2) ◽  
pp. 243-263 ◽  
Author(s):  
B Dao ◽  
D G Hawthorne ◽  
J H Hodgkin ◽  
M B Jackson ◽  
T C Morton

New bismaleimide monomers, based on pure diaminobismides (DABIs) have been synthesized. In a number of cases the bismaleimide of the 2:1 (amine/anhydride) DABI adduct has been isolated as a pure compound, but where the starting DABI consisted of a mix of imide oligomers of the diamine and dianhydride (2:1, 3:2 and higher) the corresponding bismaleimide product was found also to have a similar composition ratio. This has been confirmed in one example by separation of the oligomer mix and characterization of the components. The utility of the various bismaleimides as monomers in composite matrices has been assessed by cocuring with the common coreactant, 3,3′-diallylbisphenol A. The physical properties and thermal stability of neat resin samples and laminates are reported as well as some mechanical properties.


2011 ◽  
Vol 194-196 ◽  
pp. 484-487 ◽  
Author(s):  
Xian Zhong Mo ◽  
Chen Mo ◽  
Xiang Qi ◽  
Ren Huan Li

Biopolymer cassava starch(ST)-chitosan(CS)/montmorillonite(MMT) nanocomposites were prepared in which MMT was used as nanofiller and diluted acetic acid was used as solvent for dissolving and dispersing cassava starch, chitosan and MMT. XRD and TEM results indicated the formation of an exfoliated nanostructure of ST-CS/MMT nanocomposites. Mechanical properties testing revealed that at the range of the MMT content from 1wt% to 5wt%, tensile strength of the composites increased from 30MPa to 37.5MPa. But the elongation at break fall from 28% to 22% with the increasing of MMT. Obviously, MMT had an enforced effect to the composites. TGA results showed that the nano-dispersed MMT improved the thermal stability of the matrix systematically with the increasing of MMT.


2011 ◽  
Vol 236-238 ◽  
pp. 1014-1018 ◽  
Author(s):  
Xiao Wei Zhuang ◽  
Shou Hai Li ◽  
Yu Feng Ma ◽  
Wei Zhang ◽  
Yu Zhi Xu ◽  
...  

In this paper, lignin could partly replaced phenol to prepare lignin-phenolic(LPF) foam.The effects of amount of lignin on mechanical properties, thermal stability, fire-retardant and micro-structure of LPF foam. The results indicated that the addition of lignin decreased the brittleness and flexibility of foam, and the foam hole became larger in diameter and distributed more unevenly. When the lignin replacement amount was lower, the foam had regular foam hole structure and even distribution of foam hole, the size of foam hole increased with an increase of lignin content, SEM observations were in accordance with the early research of the mechanical properties of foams. And the addition of lignin slightly affected the fire-retardant and thermal stability of foam. When lignin replacement amount was 30% and 40%, the critical oxygen index of foam was even slightly higher than the pure PF foam.


Polymers ◽  
2019 ◽  
Vol 11 (8) ◽  
pp. 1345 ◽  
Author(s):  
Halina Kaczmarek ◽  
Bogusław Królikowski ◽  
Marta Chylińska ◽  
Ewa Klimiec ◽  
Dagmara Bajer

The development, universality and miniaturization of electronic devices leads to the search for new piezoelectric materials, among which recently, polymers play an increasingly important role. In this work, composites based on two types of polyethylene—high density polyethylene (HDPE), and medium density polyethylene (MDPE)—and aluminosilicate fillers were obtained by extrusion process. This method allowed obtaining flexible electrets in the form of a thin film after polarization under a constant electric field of 100 V/μm. The morphology of the composites was characterized by scanning electron microscopy, whereas the crystallinity was determined by X-ray diffraction. The mechanical properties and thermal stability of the composites were examined by means of tensile tests and thermogravimetry, respectively. The piezoelectric characteristics were appointed by measuring the electric charge and the voltage in the polarized samples. Piezoelectric coefficients, and the stability of electrets over time were also determined. Moreover, the effect of film orientation on piezoelectric properties was investigated. Composites with appropriate morphology (i.e., well dispersed filler particles in the polymer matrix and formed holes) were obtained which ensured permanent electrical polarization. It was found that the best piezoelectric, mechanical properties and thermal stability exhibits HDPE composite with 5% of aluminosilicate filler.


2011 ◽  
Vol 233-235 ◽  
pp. 1786-1789 ◽  
Author(s):  
Li Sha Pan ◽  
Nai Xu ◽  
Zheng Tian ◽  
Ling Bin Lu ◽  
Su Juan Pang ◽  
...  

PPC is a new biodegradable aliphatic polycarbonate with poor thermal stability and mechanical properties which is difficult to form sheets or films and so on. Through the addition of alkali lignin, thermal stability and mechanical properties of PPC was improved largely. PPC/ alkali lignin sheets could be prepared. DSC results showed that the thermal stability of PPC was improved by the introduction of alkali lignin. SEM showed good dispersion of alkali lignin particles into PPC matrix that resulted in good miscibility. Improved mechanical properties and thermal stability of PPC/ alkali lignin blends were attributed to stronger interfacial interaction of PPC and alkali lignin. These results indicate that blending PPC with alkali lignin is an efficient and convenient method to improve the properties of PPC.


Sign in / Sign up

Export Citation Format

Share Document