Intelligent Robotic Gripper Control Strategy

2013 ◽  
Vol 753-755 ◽  
pp. 2006-2009 ◽  
Author(s):  
Shiuh Jer Huang ◽  
Wei Han Chang ◽  
Jui Yiao Su

Although, on-off control robot gripper is widely employed in pick-and-place operations, it can not be applied in fragile or soft objects handling. Here, an intelligent gripper is designed with embedded distributed control structure for overcoming the uncertainty of grasped object mass and soft/hard features. An efficient model-free intelligent fuzzy sliding mode control strategy is employed to design the position and force controllers of gripper, respectively. Experimental results of pick-and-place soft and hard objects with grasping force auto-tuning and anti-slip control strategy are shown by pictures to verify this distributed system performance. The position and force tracking errors are less than 1 mm and 0.1 N, respectively.

2013 ◽  
Vol 479-480 ◽  
pp. 742-746
Author(s):  
Shiuh Jer Huang ◽  
Wei Han Chang ◽  
Jui Yiao Su ◽  
Yan Chen Liu

An intelligent gripper is designed with embedded distributed control structure for overcoming the uncertainty of grasped object mass and soft/hard features. An efficient model-free intelligent fuzzy sliding mode control strategy is employed to design the position and force controllers of gripper, respectively. Experimental results of pick-and-place soft and hard objects with grasping force auto-tuning and anti-slip control strategy are shown by pictures to verify this distributed system performance. The position and force tracking errors are less than 1 mm and 0.1 N, respectively.


2013 ◽  
Vol 321-324 ◽  
pp. 1670-1674 ◽  
Author(s):  
Yuan Tao Zhang ◽  
Tai Fu Li ◽  
Jun Yi

Considering the robust control of stabilized platform of rotary steering drilling system, an adaptive fuzzy sliding mode control strategy based on genetic optimization is presented. Firstly, the universal approximation property of fuzzy system is used to approximate the uncertain external disturbance upper bound of stabilized platform under wording condition. Subsequently, sliding mode controller is designed to guarantee the robustness of the closed-loop system and sign function is replaced by bipolar sigmoid function to weaken chattering. Finally, genetic algorithm (GA) is applied to search the optimal controller parameters, including switching function coefficient, membership function of fuzzy system, adaptive coefficient of fuzzy system and sigmoid function coefficient. Simulation results show that this control strategy can make stabilized platform achieve optimal control performance and robustness.


Author(s):  
Liming Dai ◽  
Lin Sun

An active control strategy is developed for nonlinear vibration control of an axially translating beam applied in engineering field. The control strategy is established on the basis of Fuzzy Sliding Mode Control. The nonlinear model governing the beam system is described with a six-degree nonlinear dynamic system. Corresponding to the multi-degree nonlinear system, the active control strategy is developed. The proposed control strategy is proven to be effective in controlling and stabilizing the nonlinear motions especially chaotic motion of the beam.


2013 ◽  
Vol 37 (3) ◽  
pp. 273-282
Author(s):  
Shiuh-Jer Huang ◽  
Wei-Han Chang ◽  
Janq-Yann Lin

Robotic pick-and-place operation is planned for handling hard objects with on-off control gripper. It does not have force monitoring capability for safe grasping soft objects. Current force/torque sensor is too expensive and difficult to implement. Here, a low cost embedded control structure is designed with distributed FPGA robotic position control and gripper Arduino force control kernels. A model-free intelligent fuzzy sliding mode control strategy is employed to design the position controller of each robotic joint and gripper force controller. Experimental results show that the position and force tracking control errors of this robotic system are less than 1 mm and 0.1 N, respectively for pick-and-place different soft foods.


Electronics ◽  
2020 ◽  
Vol 9 (10) ◽  
pp. 1731
Author(s):  
Xi Zhang ◽  
Hui Lin

This paper proposes a backstepping fuzzy sliding mode control method for the antiskid braking system (ABS) of unmanned aerial vehicles (UAVs). First, the longitudinal dynamic model of the UAV braking system is established and combined with the model of the electromechanical actuator (EMA), based on reasonable simplification. Subsequently, to overcome the higher-order nonlinearity of the braking system and ensure the lateral stability of the UAV during the braking process, an ABS controller is designed using the barrier Lyapunov function to ensure that the slip ratio can track the reference value without exceeding the preset range. Then, a power fast terminal sliding mode control algorithm is adopted to realize high-performance braking pressure control, which is required in the ABS controller, and a fuzzy corrector is established to improve the dynamic adaptation of the EMA controller in different braking pressure ranges. The experimental results show that the proposed braking pressure control strategy can improve the servo performance of the EMA, and the hardware in loop (HIL) experimental results indicate that the proposed slip ratio control strategy demonstrates a satisfactory performance in terms of stability under various runway conditions.


Actuators ◽  
2021 ◽  
Vol 10 (8) ◽  
pp. 191
Author(s):  
Ghulam E Mustafa Abro ◽  
Saiful Azrin B. M. Zulkifli ◽  
Vijanth Sagayan Asirvadam ◽  
Zain Anwar Ali

The underactuated quadrotor unmanned aerial vehicle (UAV) is one of the nonlinear systems that have few actuators as compared to the degree of freedom (DOF); thus, it is a strenuous task to stabilize its attitude and positions. Moreover, an induction of unmodelled dynamic factors and uncertainties make it more difficult to control its maneuverability. In this paper, a model-free based single-dimension fuzzy sliding mode control (MFSDF-SMC) is proposed to control the attitude and positions of underactuated quadrotor UAV. The paper discusses the kinematic and dynamic models with unmodelled dynamic factors and unknown external disturbances. These unmodelled factors and disturbances may lead the quadrotor towards failure in tracking specific trajectory and may also generate some serious transient and steady-state issues. Furthermore, to avoid the problem of gimbal lock, the model is amalgamated with hyperbolic function to resolve the singularity issues dully developed due to Newton Euler’s dynamic modeling. The simulation results performed for MFSDF-SMC using MATLAB software R2020a are compared with conventional sliding mode control, fuzzy-based sliding control and single-dimension fuzzy-based sliding mode control without a model-free approach. The design and implementation of the model-free single dimension-based fuzzy sliding mode control (MFSDF-SMC) with an updated Lyapunov stability theorem is presented in this work. It is observed that MFSDF-SMC produces robust trajectory performance therefore, and the manuscript suggests the experimental setup to test the proposed algorithm in a noisy environment keeping the same conditions. The verification of the equipment used and its effective demonstration is also available for the reader within the manuscript.


Sign in / Sign up

Export Citation Format

Share Document