The Microchannel of Microfluidic Chip Fabrication by Micro-Powder Blasting

2009 ◽  
Vol 76-78 ◽  
pp. 367-372
Author(s):  
Chiung Fang Huang ◽  
Yung Kang Shen ◽  
Yi Lin ◽  
Chi Wei Wu

The process of micro-powder blasting is the high speed gas flow which mixed the micro-particle and gas to impact the brittle substrate by the specialized nozzle. This paper combined various diameters Al2O3 eroding particle with a novel masking technique to fabricate the pattern channels in soda glass with a width to 2000 μm and depth down to 1631 μm. The masking technology for fabricating microchannel is consisted by the combination of two polymers: 1) the elastic and thermal-curable poly-(dimethyl siloxane) (PDMS) for its erosion resistance and 2) the brittle epoxy resin SU-8 for its photosensitivity. This paper discusses the processing procedure by the different processing parameters (micro-powder impact pressure, the distance between nozzle and substrate, micro-powder size, and micro-powder impact time) to find the optimal process. The results show that the micro-powder size is the most important factor for the depth of microchannel of microfluidic chip. The surface roughness of microchannel of microfluidic chip is nearly 5-6μm.

Author(s):  
Pooyan Tirandazi ◽  
Carlos H. Hidrovo

Miniaturized laboratory-on-a-chip systems have been extensively developed over the past decade as promising tools for a wide range of applications, specifically in chemical synthesis and biomedical diagnostics. Droplet-based microfluidic systems have become ubiquitous in such applications by providing essential tools to perform rapid as well as high throughput measurements on small volumes of fluids. Thus far, the majority of the research endeavors have been focused on liquid-liquid systems for generating microscale drops (typically water in oil). Droplets generated in liquid-liquid microfluidic systems tend to be very uniform in size, and due to high surface area to volume ratio of micro-droplets, heat and mass transfer occurs at higher rates as compared to continuous-flow microfluidics. Generation of droplets in a gaseous medium, on the other hand, have been widely used in applications that involve open environment liquid spraying, such as ink-jet printers. However, usually in such applications there is no control over either the size or frequency of the generated droplets, and as a result droplets formed in these systems are widely distributed in size. Here we demonstrate an alternative scheme for controlled generation of liquid droplets in a microfluidic chip using a high speed gas stream. We have incorporated the inertial effect of a high-speed gaseous medium with the flow-focusing geometry, fabricated in a PDMS chip, in order to generate droplets with controlled size. Flow regimes involved in this scheme may be divided in three main regions i.e. co-flow, jetting, and dripping among which only dripping regime is capable of producing distinct aqueous droplets in the channel. It should be noted that poor surface conditions and high gas flow rates may result in generation of satellite droplets together with the main droplet in the dripping region, which substantially affects the monodispersity of the droplets. The generated drops were collected thereafter and it is shown that monodisperse droplets with known size ranging from 50 μm to 100 μm in diameter can be achieved within the dripping flow regime. We believe this method offers beneficial opportunities for the next generation of Lab-on-a-chip devices in which the introduction of a gaseous medium is required, namely oxidation, detection of airborne particles, and formation of micro-particles and micro-gels. Furthermore, the high speed droplets generated in this method represent the basis for a new approach based on droplet pair collisions for fast efficient micromixing which provides a significant development in modern LOC and mTAS devices.


Author(s):  
Yung-Hsun Shih ◽  
Yung-Kang Shen ◽  
Yi Lin ◽  
Keng-Liang Ou ◽  
Rong-Hong Hong ◽  
...  

2021 ◽  
Vol 1827 (1) ◽  
pp. 012037
Author(s):  
Dayuan Wu ◽  
Ping Yan ◽  
Jie Pei ◽  
Hui Zhou ◽  
Runzhong Yi ◽  
...  

Polymers ◽  
2021 ◽  
Vol 13 (4) ◽  
pp. 607
Author(s):  
Lucero M. Hernandez-Cedillo ◽  
Francisco G. Vázquez-Cuevas ◽  
Rafael Quintero-Torres ◽  
Jose L. Aragón ◽  
Miguel Angel Ocampo Mortera ◽  
...  

In this article, we show an alternative low-cost fabrication method to obtain poly(dimethyl siloxane) (PDMS) microfluidic devices. The proposed method allows the inscription of micron resolution channels on polystyrene (PS) surfaces, used as a mold for the wanted microchip’s production, by applying a high absorption coating film on the PS surface to ablate it with a focused low-power visible laser. The method allows for obtaining micro-resolution channels at powers between 2 and 10 mW and can realize any two-dimensional polymeric devices. The effect of the main processing parameters on the channel’s geometry is presented.


1952 ◽  
Vol 18 (67) ◽  
pp. 31-35
Author(s):  
Kensuke KAWASHIMO ◽  
Shigebumi AOKI

Author(s):  
Jingjing Luo ◽  
Dieter Brillert

Abstract Dry gas lubricated non-contacting mechanical seals (DGS), most commonly found in centrifugal compressors, prevent the process gas flow into the atmosphere. Especially when high speed is combined with high pressure, DGS is the preferred choice over other sealing alternatives. In order to investigate the flow field in the sealing gap and to facilitate the numerical prediction of the seal performance, a dedicated test facility is developed to carry out the measurement of key parameters in the gas film. Gas in the sealing film varies according to the seal inlet pressure, and the thickness of gas film depends on this fluctuated pressure. In this paper, the test facility, measurement methods and the first results of static pressure measurements in the sealing gap of the DGS obtained in the described test facility are presented. An industry DGS with three-dimensional grooves on the surface of the rotating ring, where experimental investigations take place, is used. The static pressure in the gas film is measured, up to 20 bar and 8,100 rpm, by several high frequency ultraminiature pressure transducers embedded into the stationary ring. The experimental results are discussed and compared with the numerical model programmed in MATLAB, the characteristic and magnitude of which have a good agreement with the numerical simulations. It suggests the feasibility of measuring pressure profiles of the standard industry DGS under pressurized dynamic operating conditions without altering the key components of the seal and thereby affecting the seal performance.


Author(s):  
M. Vardelle ◽  
P. Fauchais ◽  
A. Vardelle ◽  
A.C. Léger

Abstract A study of the flattening and cooling of particles plasma-sprayed on a substrate is presented. The characteristic parameters of the splats are linked to the parameters of the impacting particles by using an experimental device consisting of a phase Doppler particle analyzer and a high-speed pyrometer. However, during the long experiments required to get reliable correlations, it was observed that variations in plasma spray operating conditions may alter the particles behavior in the plasma jet. Therefore, a simple and easy-to-use system was developed to control in real time the spray jet. In this paper, the effect of carrier gas flow rate, arc current and powder mass flow rate is investigated. The results on zirconia and alumina powders show the capability of the technique to sense the particle spray position and width.


2018 ◽  
Vol 89 (16) ◽  
pp. 3221-3233 ◽  
Author(s):  
Xibo Hao ◽  
Hui Huang ◽  
Yongchun Zeng

The polymer jet velocity is one of the most basic and critical factors in the melt-blowing process and has always been difficult to measure online. Much effort has been made on the numerical prediction of the jet velocity. However, little work has involved the complex interaction between the air flow and the polymer. Here, the Level-Set method is used to develop the coupled air–polymer two-phase flow model, and to simulate the polymer jet motion in the melt-blowing process considering the coupled effect of the air and polymer. Meanwhile, high-speed photography is adopted in the experiments to verify the simulation results. The x- and y-components of the jet velocities and the whipping amplitude of the jet motion are discussed. The rapid increase of jet velocity and the decrease of jet diameter show that most attenuation of the polymer jet occurred within a distance close to the die (10 mm). Based on the model, the effects of the processing parameters on the jet velocity are examined numerically.


Sign in / Sign up

Export Citation Format

Share Document