Properties of Friction Stir Welded Blanks Made from DC04 Mild Steel and Aluminum AA6016

2013 ◽  
Vol 769 ◽  
pp. 237-244 ◽  
Author(s):  
Alexander Göttmann ◽  
Chris Mertin ◽  
Linda Mosecker ◽  
Andreas Naumov ◽  
Markus Bambach

Due to increasing demands for lightweight structures in automotive applications the use of sheet metal components made from aluminium alloys is a promising approach for weight reduction. The combination of steel and aluminium in car bodies may be an interesting alternative compared to a monolithic material design. The weight of structural parts of a car body shell can be reduced if dedicated parts consist of aluminium instead of steel. This approach allows for an optimal exploitation of the material properties of both materials, bringing high strength into highly loaded areas while areas subject to lower loads are equipped with lower strength and weight. However, a multi-material design combining steel and aluminium demands for suitable joining methods, especially if a forming operation is applied to the welded sheets. In conventional fusion welding processes the formation of intermetallic phases due to the metallurgical affinity of aluminium and iron is a serious problem. Recent developments in regulated cold metal transfer (CMT) welding technologies at the Institute of Welding Technology and Joining Technology (ISF) at the RWTH Aachen promise an appropriate solution to this problem. Due to a digitally regulated arc technology, the heat input in CMT is reduced to a minimum. However, the inevitable formation of a welding bead in arc processes with filler material is a criterion of exclusion in the case of production of welds for car body shells. To achieve an optimal appearance of the body shell, the welding beads need to be removed from both sides of the sheet in a second manufacturing step. Hence, to avoid further costs, it seems expedient to search for alternative welding technologies. Friction stir welded (FSW) joints show relatively even welding beads. Furthermore, this joining method is characterised by a low process temperature, which is considerably below the melting temperature of the base materials. Hence, FSW is a promising joining technique to produce tailored blanks out of aluminium and steel. The main objective of the present paper is the evaluation of suitable process parameters for the production of FSW butt joints with a thickness of 1 mm made from the aluminium alloy AA6016-T4 and the mild steel DC04. Welding experiments using a varying rotational speed, tool offset, tool velocity, tool plunge depth and tool tilt angle were carried out. To identify the best parameters in terms of the strength of the joint, tensile tests were performed. It is shown, that an amount of approximately 85% of the tensile strength of the base material AA6016 can be achieved. Using SEM the formation of the fracture surfaces was analysed. Different fracture types were identified and the possible reasons for their occurrence are discussed. It is shown that in the case of optimal joining procedure the failure occurs in the thermomechanically affected zone in the aluminium sheet, were the plastic deformation is low. Additionally, thermography has been employed to evaluate the temperature distribution during the process. In metallographic investigations it was found that during welding the microstructure of the aluminium base material changes due to plastic deformation and temperature increase in the area of the weld seam. Using hardness measurements the change of the mechanical properties in the contact zone of both base materials and in the heat affected zone was examined. Finally, an outlook is given with respect to the possibilities of producing FSW welded sheets that can be formed using conventional deep-drawing.

2010 ◽  
Vol 638-642 ◽  
pp. 1221-1226 ◽  
Author(s):  
A.A.M. da Silva ◽  
E. Aldanondo ◽  
P. Alvarez ◽  
A. Lizarralde ◽  
A. Echeverria

Friction Stir Welding (FSW) is a solid-state joining process whereby no bulk melting of the base material occurs during joining. FSW avoids severe distortion and formation of as-cast coarse microstructure as well as defects arising from melting and solidification during traditional fusion welding processes. The objective of this investigation is to evaluate the effect of joining parameters on the mechanical and microstructural properties of dissimilar aluminium alloys (3 mm thick AA2024-T3 and AA7075-T6 sheets) joints produced by FSW. Microstructural features have been analysed; while mechanical performance has been investigated in terms of hardness and tensile testing. In both welding configurations the boundary between the base materials at the stir zone is clearly delineated, i.e., no material mixing is observed.


2009 ◽  
Vol 83-86 ◽  
pp. 1243-1250 ◽  
Author(s):  
R.L.L.P. Cerveira ◽  
G. F. Batalha

The aim is to analyze a junction produced by a Friction Stir Welding (FSW) joining process under multiaxial loading, employing a modified Arcan test that allows an angle variation of the loading in order to evaluate the failure of the FSW weldment as compared to the base material. A short review of the earlier studies and relevant theories about the FSW processes and fracture modes I and II under multiaxial loading are presented and were experimentally evaluated for an AA2024-T3 aluminum alloy sheets (t = 1.6 mm) processed by FSW. The results obtained can serve as a basis to compare the junctions made using FSW and conventional joint methods such as rivets (very common practice in the aeronautical industry).


Author(s):  
Shalin Marathe ◽  
Harit Raval

Abstract The automobile, transportation and shipbuilding industries are aiming at fuel efficient products. In order to enhance the fuel efficiency, the overall weight of the product should be brought down. This requirement has increased the use of material like aluminium and its alloys. But, it is difficult to weld aluminium using conventional welding processes. This problem can be solved by inventions like friction stir welding (FSW) process. During fabrication of product, FSW joints are subjected to many different processes and forming is one of them. During conventional forming, the formability of the welded blanks is found to be lower than the formability of the parent blank involved in it. One of the major reasons for reduction in formability is the global deformation provided on the blank during forming process. In order to improve the formability of homogeneous blanks, Single Point Incremental Forming (SPIF) is found to be giving excellent results. So, in this work formability of the welded blanks is investigated during the SPIF process. Friction Stir Welding is used to fabricate the welded blanks using AA 6061 T6 as base material. Welded blanks are formed in to truncated cone through SPIF process. CNC milling machine is used as SPIF machine tool to perform the experimental work. In order to avoid direct contact between weld seam and forming tool, a dummy sheet was used between them. As responses forming limit curve (FLC), surface roughness, and thinning are investigated. It was found that use of dummy sheet leads to improve the surface finish of the formed blank. The formability of the blank was found less in comparison to the parent metal involved in it. Uneven distribution of mechanical properties in the welded blanks leads to decrease the formability of the welded blanks.


2012 ◽  
Vol 186 ◽  
pp. 331-334
Author(s):  
Mateusz Kopyściański ◽  
Stanislaw Dymek ◽  
Carter Hamilton

This research characterizes the changes in microstructure that occur in friction stir welded extrusions of a novel 7042 aluminum alloy. Due to the presence of scandium the base material preserved the deformation microstructure with elongated grains and fairly high dislocation density. The temperature increase with simultaneous severe plastic deformation occurring during friction stir welding induced significant changes in the microstructure within the weld and its vicinity. The weld center (stir zone) was composed of fine equiaxed grains with residual dislocations and a modest density of small precipitates compared to the neighbouring thermomechanically and heat affected zones where the density of small precipitates was much higher.


2015 ◽  
Vol 1119 ◽  
pp. 597-600
Author(s):  
Hyun Ho Jung ◽  
Ye Rim Lee ◽  
Jong Hoon Yoon ◽  
Joon Tae Yoo ◽  
Kyung Ju Min ◽  
...  

Since solid state welded joint is formed from an intimate contact between two metals at temperatures below the melting point of the base materials, the structural integrity of welding depends on time, temperature, and pressure. This paper provides some of examples of friction stir welding and diffusion welding process for aerospace components. Friction stir welding process of AA2195 was developed in order to study possible application for a large fuel tank. Massive diffusion welding of multiple titanium sheets was performed and successful results were obtained. Diffusion welding of dissimilar metals of copper and stainless steel was necessary to manufacture a scaled combustion chamber. Diffusion welding of copper and steel was performed and it is shown that the optimum condition of diffusion welding is 7MPa at 890°C, for one hour. It is shown that solid state welding processes can be successfully applied to fabricate lightweight aerospace parts.


2020 ◽  
pp. 35-46
Author(s):  
M.D. Panteleev ◽  
◽  
A.V. Sviridov ◽  
A.A. Skupov ◽  
N.S. Odintsov ◽  
...  

In this work, we investigated the technological features of promising technologies for laser welding and friction stir welding of high-strength aluminum-lithium alloy V-1469. The modes of laser welding and friction stir welding have been carried out. In this article, we showed the perspective welding methods provide high values of ductility and impact toughness, while the strength of welded joints is not less than 0,8 of the strength of the base material and values of low cycle fatigue is not less than 110•103 cycles. The results allows to propose laser welding and friction stir welding processes as an alternative to riveted joint for aluminum-lithium alloy V-1469 as applied to the elements of the fuselage.


2014 ◽  
Vol 794-796 ◽  
pp. 371-376 ◽  
Author(s):  
Ákos Meilinger ◽  
János Lukács

The Friction Stir Welding (FSW) is a dynamically developing version of the pressure welding processes. High-quality welded joints can be created using this process for different engineering applications (e. g. automotive parts). Nowadays, the knowing of the properties and the behaviour of the welded joints is an important direction of the investigations, especially under cyclic loading. The research work aimed to demonstrate the behaviour of the friction stir welded joints under cyclic loading conditions. Fatigue Crack Propagation (FCG) experiments were performed on 5754-H22 and 6082-T6 aluminium alloys and their friction stir welded joints. The CT type specimens were cut parallel and perpendicular to the characteristic directions of the base materials and the welded joints, and the notch locations in the specimens of welded joints were different, too. Therefore, the propagating cracks represent the possible directions of the fatigue cracks both on the base materials and on the welded joints. The results of the fatigue crack propagation tests on the welded joints clearly demonstrate the different characteristics of the thermo-mechanically affected zone (TMAZ), the heat affected zone (HAZ), and the advancing (AS) and retreating sides (RS) of the weld nugget (WN). The investigations and their results were compared with each other and with the results can be found in the literature.


2009 ◽  
Vol 83-86 ◽  
pp. 1220-1227
Author(s):  
Gianluca Buffa ◽  
Livan Fratini

Spot welding can be considered a very common joining technique in automotive and transportation industries as it permits to obtain effective lap-joints with short process times and what is more it is easily developed through robots and automated systems. Recently the Friction Stir Spot Welding (FSSW) process has been proposed as a natural evolution of the already known Friction Stir Welding (FSW) process, allowing to obtain sound spot joints that do not suffer from the insurgence of typical welding defects due to the fusion of the base material. In the paper, a modified Friction Stir Spot Welding (FSSW) process, with a spiral circular movement given to the tool after the sinking stage, is proposed. A continuum based numerical model for Friction Stir Spot Welding process is developed, that is 2D Lagrangian implicit, coupled, rigid-viscoplastic. This model is used to investigate the distribution of the main field variables, namely temperature, strain and strain rate, as well as the Zener-Hollomon parameter which, in turn, strongly affects the Continuous Dynamic Recrystallization (CDRX) process that takes place in the weld nugget. Numerical and experimental results are presented showing the effects of the process parameters on the joint performances and the mechanical effectiveness of the modified process.


2014 ◽  
Vol 611-612 ◽  
pp. 1429-1436 ◽  
Author(s):  
Chris Mertin ◽  
Andreas Naumov ◽  
Linda Mosecker ◽  
Markus Bambach ◽  
Gerhard Hirt

Hybrid components made of steel and aluminum sheet metal are a promising approach for weight reduction for automotive applications. However, lightweight components made of steel and aluminum require suitable joining technologies, particularly if forming operations follow after the welding process. Friction Stir Welding (FSW) is a promising solid-state welding technology for producing dissimilar joints of steel and aluminum. Within this work dissimilar butt joints were produced using sheet metals of mild steel DC04 and the aluminum alloy AA6016 with a thickness of about 1 mm. The FSW joints show approximately 85 % of the tensile strength of the aluminum base material. In metallographic investigations of the produced FSW blanks it was found that the microstructure in the area of the weld seam changes in the aluminum alloy due to the process temperature and plastic deformation. Due to temperature dependent changes of precipitations of the aluminum alloy, temperature measurements have been carried out during the welding process. To find an explanation of the reduction in tensile strength of the FSW joints, short time heat treatment experiments in the temperature range between 250 °C and 450 °C were performed using the aluminum base material. Heat treatments in the temperature range of the measured process temperature result in a reduction of the tensile strength of about 20 % regardless the annealing time.


Author(s):  
S. M. O. Tavares ◽  
P. C. M. Azevedo ◽  
B. Emi´lio ◽  
V. Richter-Trummer ◽  
M. A. V. Figueiredo ◽  
...  

The T-joint is a common joint type frequently used in transport industries because of the importance of increasing the inertia and strength of thin skins and shells without significant weight increase. This shape can be obtained by different processes as extruding, riveting, welding or others. However, the low weldability of some aluminum alloys, when using traditional welding processes, is an obstacle to the possible full benefit of such reinforced structures. The friction stir welding (FSW) process is suitable to join most aluminum alloys and should be considered as a feasible alternative to the other processes used to produce this type of geometry. This paper reports the results obtained concerning FSW T-joints with a new configuration. These joints simulate a typical reinforcement composed by two materials in order to optimize the damage tolerance. The skin is made of a 6xxx series alloy, and the reinforcement is made of a 7xxx series alloy. Mechanical properties were obtained and micro-structural analyses of the weld zone were performed, and the results were compared with those obtained in base materials and butt joints.


Sign in / Sign up

Export Citation Format

Share Document