Study of the Intensity of Global Solar Radiation Incident in Suan Sunandha Rajabhat University

2013 ◽  
Vol 770 ◽  
pp. 229-232
Author(s):  
A. Sansomboon ◽  
N. Luewarasirikul ◽  
A. Ittipongse ◽  
W. Phae-Ngam ◽  
S. Pattarapanitchai

Solar radiation is one of mains alternative energy, widely used in present day. Measure solar radiation accurately is an essential for planning in application of used. Universities are the places that have used significant of energy all year long. Therefore, long-term measured solar radiation data is important, for understand in both quantity and variation in time period, for application of the alternative energy in future. The main objective of this research is to investigate solar energy potentials of Suan Sunandha Rajabhat University, Bongkok, Thailand (Latitude 13.46°N, Longitude 100.31°E). A station for solar radiation was installed at Suan Sunandha Rajabhat University. The main equipment is composed of two parts: 1) a pyranometer from Kipp & Zonen Ltd., model CMP11, and 2) a digital data logger from Measurement Systems Ltd. model DX2000. The pyranometer is permanently installed on the top of a building. The data logger is keeping clean and safe inside the building. To analyze the values of the global solar radiations, the computer source code is written in Interactive Data Language version 6.1 (IDL6.1). The results show the variation of the average hourly global irradiance is about 800-900 W/m2 at 12:00 UTC. The maximum monthly average daily global radiation is 21.5 MJ/m2-day in April. The yearly average daily radiation at Suan Sunandha Rajabhat University is found to be 16.55 MJ/m2-day. The information from the monthly and yearly global radiation has relatively high solar energy potentials. Finally, the solar radiation database was also developed for use in solar energy applications in Suan Sunandha Rajabhat University and neighbor areas.

2016 ◽  
Vol 4 (4) ◽  
pp. 32-40 ◽  
Author(s):  
Katarzyna Waniek

AbstractHistorically, Silesia has been at the centre of the Polish coal industry for many years and thus has experienced poorer air quality compared to other voivodeships. However, in recent years strong economic transformation in the area has led to a considerable reduction in coal production. This study aimed to assess the variability of global solar radiation at selected stations within the Silesian voivodeship, in order to re-evaluate the resources of renewable solar energy during the period 1994–2013. The theoretical potential of solar radiation was calculated based on a three-dimensional terrain model. The data on global solar radiation from 13 stations within the Silesia region, covering the period 1994–2013, were obtained from the Regional Inspectorate of Environmental Protection in Katowice. The most favourable conditions for the use of solar energy were found at the cities Sosnowiec and Cieszyn. The largest increase in global radiation over the research period was observed in Zabrze. The average annual global radiation ranged between 600–1300 kWh·m−2. Digital Elevation Models (DEM) for selected districts of the Silesia region were used to calculate the theoretical potential of global solar radiation. The highest theoretical potential of global radiation was found in the district of Cieszyn, located at the highest altitude.


2018 ◽  
Vol 21 (1) ◽  
pp. 20-24
Author(s):  
Ján Čimo ◽  
Beáta Novotná

Abstract Solar energy is one of the most available energy sources and the most ecological one. Currently, the firm Kipp & Zonen belongs to prominent producer of sensors for measuring global radiation. These sensors are the most used ones in our country and also in network of meteorological measurements of WMO. Therefore, the two types of measuring sensors for global radiation (pyranometer PMP 11, CMP 6) in comparison with the calculation method Savin-Angstrom are analysed. By processing the experimental measurements of global radiation in locality Nitra, there can be observed differences between standard CMP 11 and CMP 6. The measured values by CMP 6 pyranometer in comparison with secondary standard CMP 11 are lower by about 21% to what corresponds to the accuracy level (First Class) of sensor CMP 6. Differences may have been caused by higher aberrance of non-linearity, aberrance at sunrise and sunset i.e. directional errors and also by the fact that sensor CMP 6 is not equipped with integrated temperature compensation. The similar situation was also in the comparison of global radiation, which was calculated according to the modified Savin-Angstrom method and CMP 11. Notional differences were 7% compared with the measured values of CMP 11 standard.


2004 ◽  
Vol 127 (3) ◽  
pp. 417-420 ◽  
Author(s):  
S. S. Chandel ◽  
R. K. Aggarwal ◽  
A. N. Pandey

Solar radiation data, a prerequisite for the designing and sizing of solar energy systems, are not available in many Indian locations. However, the sunshine hour or temperature data are available for most sites from which solar radiation can be computed. New correlation models have been developed; incorporating the latitude and altitude of a site to estimate the monthly average global solar radiation on horizontal surfaces using the sunshine hour and temperature data. The models are used for computing values of six Indian stations with different geographical locations, based on 10-15years of data. The estimated values are found to be in close agreement with their measured values. The estimated data are also compared with the results using other models to test the accuracy of new models. It has been shown that the estimated values of global radiation using temperature data are also sufficiently accurate and can be utilized for sites for which even sunshine hour data are not measured. This will lead to better inputs for designing and evaluating the performance of solar energy systems including passive solar buildings.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Andrea de Almeida Brito ◽  
Heráclio Alves de Araújo ◽  
Gilney Figueira Zebende

AbstractDue to the importance of generating energy sustainably, with the Sun being a large solar power plant for the Earth, we study the cross-correlations between the main meteorological variables (global solar radiation, air temperature, and relative air humidity) from a global cross-correlation perspective to efficiently capture solar energy. This is done initially between pairs of these variables, with the Detrended Cross-Correlation Coefficient, ρDCCA, and subsequently with the recently developed Multiple Detrended Cross-Correlation Coefficient, $${\boldsymbol{DM}}{{\boldsymbol{C}}}_{{\bf{x}}}^{{\bf{2}}}$$DMCx2. We use the hourly data from three meteorological stations of the Brazilian Institute of Meteorology located in the state of Bahia (Brazil). Initially, with the original data, we set up a color map for each variable to show the time dynamics. After, ρDCCA was calculated, thus obtaining a positive value between the global solar radiation and air temperature, and a negative value between the global solar radiation and air relative humidity, for all time scales. Finally, for the first time, was applied $${\boldsymbol{DM}}{{\boldsymbol{C}}}_{{\bf{x}}}^{{\bf{2}}}$$DMCx2 to analyze cross-correlations between three meteorological variables at the same time. On taking the global radiation as the dependent variable, and assuming that $${\boldsymbol{DM}}{{\boldsymbol{C}}}_{{\bf{x}}}^{{\bf{2}}}={\bf{1}}$$DMCx2=1 (which varies from 0 to 1) is the ideal value for the capture of solar energy, our analysis finds some patterns (differences) involving these meteorological stations with a high intensity of annual solar radiation.


2005 ◽  
Vol 128 (1) ◽  
pp. 104-117 ◽  
Author(s):  
T. Muneer ◽  
S. Munawwar

Solar energy applications require readily available, site-oriented, and long-term solar data. However, the frequent unavailability of diffuse irradiation, in contrast to its need, has led to the evolution of various regression models to predict it from the more commonly available data. Estimating the diffuse component from global radiation is one such technique. The present work focuses on improvement in the accuracy of the models for predicting horizontal diffuse irradiation using hourly solar radiation database from nine sites across the globe. The influence of sunshine fraction, cloud cover, and air mass on estimation of diffuse radiation is investigated. Inclusion of these along with hourly clearness index, leads to the development of a series of models for each site. Estimated values of hourly diffuse radiation are compared with measured values in terms of error statistics and indicators like, R2, mean bias deviation, root mean square deviation, skewness, and kurtosis. A new method called “the accuracy score system” is devised to assess the effect on accuracy with subsequent addition of each parameter and increase in complexity of equation. After an extensive evaluation procedure, extricate but adequate models are recommended as optimum for each of the nine sites. These models were found to be site dependent but the model types were fairly consistent for neighboring stations or locations with similar climates. Also, this study reveals a significant improvement from the conventional k-kt regression models to the presently proposed models.


2016 ◽  
Vol 2016 ◽  
pp. 1-7 ◽  
Author(s):  
Boluwaji M. Olomiyesan ◽  
Onyedi D. Oyedum

In this study, the performance of three global solar radiation models and the accuracy of global solar radiation data derived from three sources were compared. Twenty-two years (1984–2005) of surface meteorological data consisting of monthly mean daily sunshine duration, minimum and maximum temperatures, and global solar radiation collected from the Nigerian Meteorological (NIMET) Agency, Oshodi, Lagos, and the National Aeronautics Space Agency (NASA) for three locations in North-Western region of Nigeria were used. A new model incorporating Garcia model into Angstrom-Prescott model was proposed for estimating global radiation in Nigeria. The performances of the models used were determined by using mean bias error (MBE), mean percentage error (MPE), root mean square error (RMSE), and coefficient of determination (R2). Based on the statistical error indices, the proposed model was found to have the best accuracy with the least RMSE values (0.376 for Sokoto, 0.463 for Kaduna, and 0.449 for Kano) and highest coefficient of determination, R2 values of 0.922, 0.938, and 0.961 for Sokoto, Kano, and Kaduna, respectively. Also, the comparative study result indicates that the estimated global radiation from the proposed model has a better error range and fits the ground measured data better than the satellite-derived data.


2015 ◽  
Vol 6 (1) ◽  
pp. 11-17 ◽  
Author(s):  
G. Szabó ◽  
P. Enyedi ◽  
Gy. Szabó ◽  
I. Fazekas ◽  
T. Buday ◽  
...  

According to the challenge of the reduction of greenhouse gases, the structure of energy production should be revised and the increase of the ratio of alternative energy sources can be a possible solution. Redistribution of the energy production to the private houses is an alternative of large power stations at least in a partial manner. Especially, the utilization of solar energy represents a real possibility to exploit the natural resources in a sustainable way. In this study we attempted to survey the roofs of the buildings with an automatic method as the potential surfaces of placing solar panels. A LiDAR survey was carried out with 12 points/m2 density as the most up-to-date method of surveys and automatic data collection techniques. Our primary goal was to extract the buildings with special regard to the roofs in a 1 km2 study area, in Debrecen. The 3D point cloud generated by the LiDAR was processed with MicroStation TerraScan software, using semi-automatic algorithms. Slopes, aspects and annual solar radiation income of roof planes were determined in ArcGIS10 environment from the digital surface model. Results showed that, generally, the outcome can be regarded as a roof cadaster of the buildings with correct geometry. Calculated solar radiation values revealed those roof planes where the investment for photovoltaic solar panels can be feasible.


Solar Energy ◽  
2004 ◽  
Author(s):  
Ramiro L. Rivera ◽  
Karim Altaii

Solar radiation was measured and recorded on a 5-minute, hourly and daily basis at a number of sites on the Caribbean island of Puerto Rico (located from 18° to 18° 30’N latitude and from 65° 30’ to 67° 15’W longitude) over a 24 calendar month time frame. The global solar radiation was measured at four sites (namely: Aguadilla, Ponce, Gurabo, and San Juan). The global solar radiation data was measured by an Eppley Precision Spectral Pyranometer (model PSP) mounted on a horizontal surface. This pyranometer is sensitive to solar radiation in the range of 0.285 ≤ λ ≤ 2.8 μm wavelengths. Statistical analysis such as the daily average, monthly average hourly, monthly average daily, and annual average daily global radiation are presented in this paper. Despite its small size, a 13 percent variation in the global solar radiation has been observed within the island. Reasonable solar radiation values, for solar energy conversion system installation, seem to exist at and possibly around Aguadilla.


2019 ◽  
Vol 44 (2) ◽  
pp. 168-188
Author(s):  
Shaban G Gouda ◽  
Zakia Hussein ◽  
Shuai Luo ◽  
Qiaoxia Yuan

Utilizing solar energy requires accurate information about global solar radiation (GSR), which is critical for designers and manufacturers of solar energy systems and equipment. This study aims to examine the literature gaps by evaluating recent predictive models and categorizing them into various groups depending on the input parameters, and comprehensively collect the methods for classifying China into solar zones. The selected groups of models include those that use sunshine duration, temperature, dew-point temperature, precipitation, fog, cloud cover, day of the year, and different meteorological parameters (complex models). 220 empirical models are analyzed for estimating the GSR on a horizontal surface in China. Additionally, the most accurate models from the literature are summarized for 115 locations in China and are distributed into the above categories with the corresponding solar zone; the ideal models from each category and each solar zone are identified. Comments on two important temperature-based models that are presented in this work can help the researchers and readers to be unconfused when reading the literature of these models and cite them in a correct method in future studies. Machine learning techniques exhibit performance GSR estimation better than empirical models; however, the computational cost and complexity should be considered at choosing and applying these techniques. The models and model categories in this study, according to the key input parameters at the corresponding location and solar zone, are helpful to researchers as well as to designers and engineers of solar energy systems and equipment.


Sign in / Sign up

Export Citation Format

Share Document