Aspheric Surface NC Polishing Force-Position Decoupling Control Technology

2013 ◽  
Vol 771 ◽  
pp. 71-74
Author(s):  
Guo Fa Li ◽  
Cui Yun Shan ◽  
Pu Zhao

Based on MTTSD (Magneto-rheological Torque Transmission Servo Devices) and force-position decoupling control technology, an aspheric surface NC polishing project is put forward. The aspheric surface polishing fundamental theory is researched. Under the condition of a constant material removal rate, a new aspheric surface polishing model is brought forward. In addition, under the condition of a constant material removal rate, this paper brought up a polishing force control model and a workpiece rotating speed control model, according to witch, force and rotating speed change with the coordinates of working points, and variation curves are drawn.CLC Number: TH166 Document Identifier: A

2017 ◽  
Vol 739 ◽  
pp. 182-186
Author(s):  
Hung Jung Tsai ◽  
Pay Yau Huang ◽  
Chung Ming Tan ◽  
Tang Feng Chang

The hydrolytic properties of LiAlO2 (LAO) are important factors for its applications on LED fabrication. During soft pad polishing process, the H2O in the slurry is deleterious for LAO surface polishing results. The current study develops a material removal rate model for materials with hydrolysis reaction to predict the result of polishing process.The current research conducts the experimental studies to investigate the material removal rate and its mechanism during the soft pad polishing process. In the experimental study, the hydrolytic properties of LAO have been tested to understand the hydrolysis speed with different operation parameters to assist the development of the theoretical model. Also the material removal rates of LAO with hydrolytic property have been measured under different soft pad polishing operating conditions. The experimental results provide the hydrolytic properties of LiAlO2 to understanding of the mechanism on polishing process.


Author(s):  
H. Xu ◽  
K. Komvopoulos

A quasi-static mechanics analysis of nanoscale surface polishing that provides insight into the surface topography evolution and the removal of material at the asperity level is presented. The analysis is based on a three-dimensional stochastic model that accounts for multiscale (fractal) surface roughness and elastic, elastic-plastic, and fully plastic asperity deformation by hard abrasive nanoparticles embedded in the soft surface layer of a rigid polishing plate. Numerical results of the steady-state roughness of the polished surface, material removal rate, and wear coefficient are presented in terms of the apparent contact pressure, polishing speed, original topography and mechanical properties of the polished surface, average size and density of nanoparticles, and surface roughness of the polishing plate. Simulation trends are associated with elastic-plastic and fully plastic asperity contacts, responsible for irreversible topography changes (roughening effect) and material removal (smoothening effect), respectively. Analytical trends and predictions of the steady-state roughness of the polished surface and material removal rate are shown to be in good agreement with experimental results of nanoscale surface polishing (lapping) of magnetic recording ceramic heads.


2012 ◽  
Vol 565 ◽  
pp. 243-248 ◽  
Author(s):  
Masaki Niwa ◽  
Sachiko Ogawa ◽  
Toshiki Hirogaki ◽  
Eiichi Aoyama ◽  
Yoshiaki Onchi

To help reduce the environmental impact of abrasive polishing, we have investigated the use of a compact robot and fixed-abrasive polishing. We used a five-joint closed-link compact robot with a fine diamond stone on its main axis to polish the glass plate and measured the polishing pressure(=pressing force/stone constant area), the polishing force, and the material removal rate. From these results, we investigated the relationship between the polishing pressure and the polishing force and between the polishing pressure and the material removal rate. We found that there is an interesting relationship between the polishing pressure and polishing force, which is not simply proportional but exponential, that the friction coefficient(=polishing force/pressing force) increases as the polishing pressure increases, and that by focusing on the friction coefficient, we can estimate the material removal rate.


2012 ◽  
Vol 428 ◽  
pp. 28-32
Author(s):  
Di Zheng ◽  
Yong Jie Shi ◽  
Yuan Wang ◽  
Xiao Jun Zhao ◽  
Lun Pan ◽  
...  

The objective of this paper is to investigate the effect of radius of curvature on the material removal in the NC polishing of aspheric part. The models of polishing pressure and material removal rates were established based on Preston equation and Hertz theory. The material removal rates was analyzed. Experiments were carried out. Results showed that the material removal rate varies with the variations of the curvature under a constant polishing force and velocity, and the part can not be polished uniformly.


2022 ◽  
Vol 16 (1) ◽  
pp. 71-77
Author(s):  
Mitsuyoshi Nomura ◽  
Kenji Ozasa ◽  
Tatsuya Fujii ◽  
Tsunehisa Suzuki ◽  
Yongbo Wu ◽  
...  

This study investigates the development of an ultrasonic vibration-assisted magnetic compound fluid (MCF) polishing technology for final polishing. The fabrication of an experimental apparatus entails an ultrasonic polishing unit, and the experimental investigation of its performance in surface polishing is described. In addition, ultrasonic vibration-assisted MCF polishing under different applied methods of ultrasonic vibration is studied. The experimental results indicate that applying ultrasonic vibration to the workpiece improves the surface roughness and material removal rate when the ultrasonic vibrations are changed. In addition, across the range of polishing conditions employed in this study, the precision surface roughness and high material removal rate can be easily obtained on the acrylic plate by applying an elliptical vibration to the ultrasonic vibration.


Author(s):  
Amritpal Singh ◽  
Rakesh Kumar

In the present study, Experimental investigation of the effects of various cutting parameters on the response parameters in the hard turning of EN36 steel under the dry cutting condition is done. The input control parameters selected for the present work was the cutting speed, feed and depth of cut. The objective of the present work is to minimize the surface roughness to obtain better surface finish and maximization of material removal rate for better productivity. The design of experiments was done with the help of Taguchi L9 orthogonal array. Analysis of variance (ANOVA) was used to find out the significance of the input parameters on the response parameters. Percentage contribution for each control parameter was calculated using ANOVA with 95 % confidence value. From results, it was observed that feed is the most significant factor for surface roughness and the depth of cut is the most significant control parameter for Material removal rate.


Author(s):  
A. Pandey ◽  
R. Kumar ◽  
A. K. Sahoo ◽  
A. Paul ◽  
A. Panda

The current research presents an overall performance-based analysis of Trihexyltetradecylphosphonium Chloride [[CH3(CH2)5]P(Cl)(CH2)13CH3] ionic fluid mixed with organic coconut oil (OCO) during turning of hardened D2 steel. The application of cutting fluid on the cutting interface was performed through Minimum Quantity Lubrication (MQL) approach keeping an eye on the detrimental consequences of conventional flood cooling. PVD coated (TiN/TiCN/TiN) cermet tool was employed in the current experimental work. Taguchi’s L9 orthogonal array and TOPSIS are executed to analysis the influences, significance and optimum parameter settings for predefined process parameters. The prime objective of the current work is to analyze the influence of OCO based Trihexyltetradecylphosphonium Chloride ionic fluid on flank wear, surface roughness, material removal rate, and chip morphology. Better quality of finish (Ra = 0.2 to 1.82 µm) was found with 1% weight fraction but it is not sufficient to control the wear growth. Abrasion, chipping, groove wear, and catastrophic tool tip breakage are recognized as foremost tool failure mechanisms. The significance of responses have been studied with the help of probability plots, main effect plots, contour plots, and surface plots and the correlation between the input and output parameters have been analyzed using regression model. Feed rate and depth of cut are equally influenced (48.98%) the surface finish while cutting speed attributed the strongest influence (90.1%). The material removal rate is strongly prejudiced by cutting speed (69.39 %) followed by feed rate (28.94%) whereas chip reduction coefficient is strongly influenced through the depth of cut (63.4%) succeeded by feed (28.8%). TOPSIS significantly optimized the responses with 67.1 % gain in closeness coefficient.


2020 ◽  
Vol 38 (9A) ◽  
pp. 1406-1413
Author(s):  
Yousif Q. Laibia ◽  
Saad K. Shather

Electrical discharge machining (EDM) is one of the most common non-traditional processes for the manufacture of high precision parts and complex shapes. The EDM process depends on the heat energy between the work material and the tool electrode. This study focused on the material removal rate (MRR), the surface roughness, and tool wear in a 304 stainless steel EDM. The composite electrode consisted of copper (Cu) and silicon carbide (SiC). The current effects imposed on the working material, as well as the pulses that change over time during the experiment. When the current used is (8, 5, 3, 2, 1.5) A, the pulse time used is (12, 25) μs and the size of the space used is (1) mm. Optimum surface roughness under a current of 1.5 A and the pulse time of 25 μs with a maximum MRR of 8 A and the pulse duration of 25 μs.


2020 ◽  
Vol 38 (9A) ◽  
pp. 1352-1358
Author(s):  
Saad K. Shather ◽  
Abbas A. Ibrahim ◽  
Zainab H. Mohsein ◽  
Omar H. Hassoon

Discharge Machining is a non-traditional machining technique and usually applied for hard metals and complex shapes that difficult to machining in the traditional cutting process. This process depends on different parameters that can affect the material removal rate and surface roughness. The electrode material is one of the important parameters in Electro –Discharge Machining (EDM). In this paper, the experimental work carried out by using a composite material electrode and the workpiece material from a high-speed steel plate. The cutting conditions: current (10 Amps, 12 Amps, 14 Amps), pulse on time (100 µs, 150 µs, 200 µs), pulse off time 25 µs, casting technique has been carried out to prepare the composite electrodes copper-sliver. The experimental results showed that Copper-Sliver (weight ratio70:30) gives better results than commonly electrode copper, Material Removal Rate (MRR) Copper-Sliver composite electrode reach to 0.225 gm/min higher than the pure Copper electrode. The lower value of the tool wear rate achieved with the composite electrode is 0.0001 gm/min. The surface roughness of the workpiece improved with a composite electrode compared with the pure electrode.


Sign in / Sign up

Export Citation Format

Share Document