Performance of Polluted Source Water Treatment by Biological Aerated Filter (BAF) with Zeolite, Activated Carbon and Anthracite Media

2013 ◽  
Vol 777 ◽  
pp. 117-121
Author(s):  
Dong Wang ◽  
Li Ping Qiu ◽  
Chun Hui Guo ◽  
Qiang Liu

The performance of three BAFs with zeolite, activated carbon and anthracite media for the treatment of polluted Huaihe raw water were investigated. All three BAFs performed promising permanganate index (CODMn) and ammonia nitrogen (NH4+-N) removal efficiency as well as the turbidity removal was over 60%. Moreover, the CODMn and NH4+-N removal in the three BAFs were affacted by the characteristics of filter media. Activated carbon and anthracite had better CODMn removal than zeolite. Zeolite had the best NH4+-N removal, followed by activated carbon, anthracite was the worst.

2012 ◽  
Vol 209-211 ◽  
pp. 2053-2057
Author(s):  
Jin Xiang Liu ◽  
Shui Bo Xie ◽  
Chun Ning Cheng ◽  
Jin Sheng Lou ◽  
Shi You Li

The effect of bed material heights on treatment performance of pollutants from micro-polluted raw Water was studied in zeolite - Ceramics biological aerated filter(ZCBAF) technology. The test results showed the removal rate of CODMn, NH4+-N and UV254 will improve with the increase of media height, most of CODMn and UV254 were removed within the first 440mm , when the media height over 440mm, the effect of increase height is inconspicuous removal, and ammonia-nitrogen removal has evident improvement during 220-440mm. At the media height of 20mm, 40mm and 60mm in ZCBAF respectively, the removal efficiency of CODMn is 18.05%,31.6% and 38.62% respectively, NH4+-N removal efficiency is 29.78%,81.28% and 93.02% respectively , and UV254 removal efficiency is 7.81%,10.11% and 11.26% respectively under the air/water ratio of 1:1 and the hydraulic loading of 1.2m3/(m2.h). Removal rate of CODMn was decreased with the increase of hydraulic loading, and removal effect of NH4+-N and UV254 had not big influence.


2013 ◽  
Vol 316-317 ◽  
pp. 241-244 ◽  
Author(s):  
Xu Jie Lu

A biologically aerated filter (BAF) is a novel, flexible and effective bioreactor that provides a small footprint process option at various stages of wastewater treatment. Double layers of activated carbon and ceramsite were applied in the biological aerated filter reactor. An experiment was conducted under laboratory conditions to investigate the treatment efficiencies at different air/liquid ratios. The experimental results obtained showed that air/liquid ratio had a greater effect on NH4+–N removal than COD removal. More than 80% ammonia nitrogen was removed at 2 of air/liquid ratio. However, less than 50% COD was removed at 2 of air/liquid ratio.


2016 ◽  
Vol 73 (8) ◽  
pp. 2031-2038 ◽  
Author(s):  
L. Y. Fu ◽  
C. Y. Wu ◽  
Y. X. Zhou ◽  
J. E. Zuo ◽  
Y. Ding

In this study, petrochemical secondary effluent was treated by a 55 cm diameter pilot-scale biological aerated filter (BAF) with a media depth of 220 cm. Volcanic rock grains were filled as the BAF media. Median removal efficiency of chemical oxygen demand (COD) and ammonia nitrogen (NH3-N) was 29.35 and 57.98%, respectively. Moreover, the removal profile of the COD, NH3-N, total nitrogen and total organic carbon demonstrated that the filter height of 140 cm made up to 90% of the total removal efficiency of the final effluent. By gas chromatography–mass spectrometry, removal efficiencies of 2-chloromethyl-1,3-dioxolane, and benzonitrile, indene and naphthalene were obtained, ranging from 30.12 to 63.01%. The biomass and microbial activity of the microorganisms on the filter media were in general reduced with increasing filter height, which is consistent with the removal profile of the contaminants. The detected genera Defluviicoccus, Betaproteobacteria_unclassified and the Blastocatella constituted 1.86–6.75% of the identified gene, enhancing the COD and nitrogen removal in BAF for treating petrochemical secondary effluent.


2022 ◽  
Vol 2148 (1) ◽  
pp. 012037
Author(s):  
Shuqin Wang ◽  
Zhiqiang Zhang ◽  
Ning Wang ◽  
Wenqi Zhao ◽  
Chungang Yuan

Abstract In this paper, a small biological aerated filter for experimental use was designed, and a method was explored to optimize the nitrogen removal efficiency by using FLUENT software to simulate the particle size of the filler, the amount of the filler, the initial concentration of ammonia nitrogen, dissolved oxygen and other operating parameters. Through the simulation experiment, the optimal design parameters of the particle size of filler, the amount of filler, the initial concentration of ammonia nitrogen and the dissolved oxygen of the biological aerated filter are 4mm, 60%, 15% and 1.5%, respectively, when the removal efficiency of ammonia nitrogen exceeds 30% reported in the literature. It provides a reference for the experimental research and practical application of biological aerated filter (BAF) denitrification.


2011 ◽  
Vol 1 (1) ◽  
pp. 27-35 ◽  
Author(s):  
Pramanik Biplob ◽  
Suja Fatihah ◽  
Zain Shahrom ◽  
ElShafie Ahmed

An upflow, partially packed biological aerated filter (BAF) reactor was used to remove nitrogen in the form of ammonia ions by a nitrification process that involves physical, chemical and biological phenomena governed by a variety of parameters such as dissolved oxygen concentration, pH and alkalinity. Dissolved oxygen (DO) and pH were shown to have effects on the nitrification process in this study. Three C:N ratios i.e., 10, 4 and 1 were compared during this study by varying the nitrogen loading while the carbon loading was kept constant at 0.405 ± 0.015 kg chemical oxygen demand m−3 d−1. The removal efficiencies of ammonia linearly increase with a rise of the initial concentration of ammonia-nitrogen. The results of the 115 days' operation of the BAF system showed that its overall NH3-N performance was good, where a removal efficiency of 87.0 ± 2.9%, 89.2 ± 1.38% and 91.1 ± 0.7% and COD removal of 87.6 ± 2.9%, 86.4 ± 2.1% and 89.5 ± 2.6% were achieved for the C:N ratios of 10, 4 and 1, respectively on average, over 6 h hydraulic retention time (HRT). No clogging occurred throughout the period although backwashing was eliminated. It was concluded that the BAF system proposed in this study removed nitrogen by the nitrification process extremely well.


2019 ◽  
Vol 25 (4) ◽  
pp. 554-560 ◽  
Author(s):  
Jin-Su Kim ◽  
Ji-Young Lee ◽  
Seung-Kyu Choi ◽  
Qian Zhu ◽  
Sang-Ill Lee

This study focuses on nitrification through a biological aerated filter (BAF) that is filled with a zeolite medium at low concentrations of ammonia. The zeolite medium consists of natural zeolite powder. The BAF is operated under two types of media, which are a ball-type zeolite medium and expanded poly propylene (EPP) medium. Nitrification occurred in the zeolite BAF (ZBAF) when the influent concentration of ammonia nitrogen was 3 mg L-1, but the BAF that was filled with an EPP medium did not experience nitrification. The ammonia nitrogen removal efficiency of ZBAF was 63.38% and the average nitrate nitrogen concentration was 1.746 mg/L. The ZBAF was tested again after a comparison experiment to treat pond water, and municipal wastewater mixed pond water. The ZBAF showed remarkable ammonia-nitrogen treatment at low concentration and low temperature. During this period, the average ammonia nitrogen removal efficiency was 64.56%. Especially, when water temperature decreased to 4.7℃, ammonia nitrogen removal efficiency remained 79%. On the other hand, the chemical-oxygen demand (COD) and phosphorus-removal trends were different. The COD and phosphorus did not show as efficient treatment as the ammonia-nitrogen treatment.


2012 ◽  
Vol 170-173 ◽  
pp. 2367-2372 ◽  
Author(s):  
Shao Ming Lu ◽  
Li Yang ◽  
Shao Wen Li ◽  
Jian Yong Guo

On account of micro-polluted raw water, high rate up-flow biological aerated filter (HUBAF) is used to remove the ammonia nitrogen and micro organic pollutants in raw water. Using ceramisite as filtration media, at a diameter of 6mm to 10 mm, a surface density of above 1g/cm3 and a filtration rate of 16 m/h to 20 m/h, ceramisite layer is in a state of micro expansion, which is beneficial to keep a high nitrification efficiency. On account of raw water where NH3-N is below 4mg/L, NH3-N concentration t can be stabilized at less than 0.5 mg/L in HUBAF effluent. Since lack time of biochemical action, the CODMn removal rate by HUBAF is low. As the effluent of BAF carried abundant amounts of microbes and dissolved oxygen, it increased the CODMn removal rate by 11% in final effluent compared to the individual conventional process of “flocculation-sedimentation-filtration-disinfection”. The turbidity removal efficiency is only the 1/3 of ordinary BAF, which reduces the head loss and energy consumption, and multiple filters to share a centralized aeration system is possible. In addition, HUBAF system is aerated by the single-pore aeration filter heads under the filtration board, equipped with both up-flow and down-flow backwash systems and no need for extra grit chamber, HUBAF is convenient for maintaining and administration.


2014 ◽  
Vol 675-677 ◽  
pp. 968-971
Author(s):  
Bin Wang ◽  
Li Ping Qiu ◽  
Li Xin Zhang ◽  
Kang Xie

The performance of biological aerated filter (BAF) with lava media for the treatment of micro-polluted source water was investigated with the operational temperature 18°C, the PH value 6.29-8.35, hydraulic retention time (HRT) 30 min as well as dissolved oxygen (DO) 2-3mg/L. The results show that the lava media is a pretty carrier that has promising surface characteristics for microorganism growth and biofilm formation. The biofilter could be operated successfully in 18d, that was shorter than the ceramic and zeolite media filter in the same start-up condition. During the steady operation period, the lava media BAF performed a promising treatment performance of permanganate index, ammonia nitrogen, and turbidity removal, where as the removal rate were 46%, 97% and 62%, respectively. Moreover, the index of UV254, which partly indicates the concentration of hardly degradable substance in the micro-polluted source water, could be removed 23% in the novel media filter.


Sign in / Sign up

Export Citation Format

Share Document