Effect on Bed Material Heights to the Performance of ZCBAF in the Treatment of Micro-Polluted Raw Water

2012 ◽  
Vol 209-211 ◽  
pp. 2053-2057
Author(s):  
Jin Xiang Liu ◽  
Shui Bo Xie ◽  
Chun Ning Cheng ◽  
Jin Sheng Lou ◽  
Shi You Li

The effect of bed material heights on treatment performance of pollutants from micro-polluted raw Water was studied in zeolite - Ceramics biological aerated filter(ZCBAF) technology. The test results showed the removal rate of CODMn, NH4+-N and UV254 will improve with the increase of media height, most of CODMn and UV254 were removed within the first 440mm , when the media height over 440mm, the effect of increase height is inconspicuous removal, and ammonia-nitrogen removal has evident improvement during 220-440mm. At the media height of 20mm, 40mm and 60mm in ZCBAF respectively, the removal efficiency of CODMn is 18.05%,31.6% and 38.62% respectively, NH4+-N removal efficiency is 29.78%,81.28% and 93.02% respectively , and UV254 removal efficiency is 7.81%,10.11% and 11.26% respectively under the air/water ratio of 1:1 and the hydraulic loading of 1.2m3/(m2.h). Removal rate of CODMn was decreased with the increase of hydraulic loading, and removal effect of NH4+-N and UV254 had not big influence.

2013 ◽  
Vol 777 ◽  
pp. 117-121
Author(s):  
Dong Wang ◽  
Li Ping Qiu ◽  
Chun Hui Guo ◽  
Qiang Liu

The performance of three BAFs with zeolite, activated carbon and anthracite media for the treatment of polluted Huaihe raw water were investigated. All three BAFs performed promising permanganate index (CODMn) and ammonia nitrogen (NH4+-N) removal efficiency as well as the turbidity removal was over 60%. Moreover, the CODMn and NH4+-N removal in the three BAFs were affacted by the characteristics of filter media. Activated carbon and anthracite had better CODMn removal than zeolite. Zeolite had the best NH4+-N removal, followed by activated carbon, anthracite was the worst.


1991 ◽  
Vol 18 (6) ◽  
pp. 940-944 ◽  
Author(s):  
J. B. Sérodes ◽  
E. Walsh ◽  
O. Goulet ◽  
J. de la Noue ◽  
C. Lescelleur

Design criteria of a pilot plant for treating secondary municipal effluents using filamentous, bioflocculating micro-algae were evaluated. Using a sequential batch reactor, the best removal rate of ammonia nitrogen was reached for 25% draw volume; at 20–22 °C, up to four cycles per day could be achieved giving a removal efficiency of approximately 2 g of N per day and per square meter of basin (200 mm deep) with negligible nitrogen residual; increasing the water level by increments of 200 mm (from 200 to 600 mm) increased the N removal efficiency in a way similar to an increase in the number of renewals per day on a 200 mm deep basin. The dominant micro-algae (Chlorhormidium) was heavily influenced by the water temperature. Key words: micro-algae, municipal wastewater, water treatment, ammonia nitrogen, removal rate, removal efficiency.


2012 ◽  
Vol 170-173 ◽  
pp. 2367-2372 ◽  
Author(s):  
Shao Ming Lu ◽  
Li Yang ◽  
Shao Wen Li ◽  
Jian Yong Guo

On account of micro-polluted raw water, high rate up-flow biological aerated filter (HUBAF) is used to remove the ammonia nitrogen and micro organic pollutants in raw water. Using ceramisite as filtration media, at a diameter of 6mm to 10 mm, a surface density of above 1g/cm3 and a filtration rate of 16 m/h to 20 m/h, ceramisite layer is in a state of micro expansion, which is beneficial to keep a high nitrification efficiency. On account of raw water where NH3-N is below 4mg/L, NH3-N concentration t can be stabilized at less than 0.5 mg/L in HUBAF effluent. Since lack time of biochemical action, the CODMn removal rate by HUBAF is low. As the effluent of BAF carried abundant amounts of microbes and dissolved oxygen, it increased the CODMn removal rate by 11% in final effluent compared to the individual conventional process of “flocculation-sedimentation-filtration-disinfection”. The turbidity removal efficiency is only the 1/3 of ordinary BAF, which reduces the head loss and energy consumption, and multiple filters to share a centralized aeration system is possible. In addition, HUBAF system is aerated by the single-pore aeration filter heads under the filtration board, equipped with both up-flow and down-flow backwash systems and no need for extra grit chamber, HUBAF is convenient for maintaining and administration.


2018 ◽  
Vol 78 (9) ◽  
pp. 1843-1851 ◽  
Author(s):  
İ. Çelen-Erdem ◽  
E. S. Kurt ◽  
B. Bozçelik ◽  
B. Çallı

Abstract The sludge digester effluent taken from a full scale municipal wastewater treatment plant (WWTP) in Istanbul, Turkey, was successfully deammonified using a laboratory scale two-stage partial nitritation (PN)/Anammox (A) process and a maximum nitrogen removal rate of 1.02 kg N/m3/d was achieved. In the PN reactor, 56.8 ± 4% of the influent NH4-N was oxidized to NO2-N and the effluent nitrate concentration was kept below 1 mg/L with 0.5–0.7 mg/L of dissolved oxygen and pH of 7.12 ± 12 at 24 ± 4°C. The effluent of the PN reactor was fed to an upflow packed bed Anammox reactor where high removal efficiency was achieved with NO2-N:NH4-N and NO3-N:NH4-N ratios of 1.32 ± 0.19:1 and 0.22 ± 0.10:1, respectively. The results show that NH4-N removal efficiency up to 98.7 ± 2.4% and total nitrogen removal of 87.7 ± 6.5% were achieved.


2013 ◽  
Vol 295-298 ◽  
pp. 1478-1481
Author(s):  
Feng Xun Tan ◽  
Jiu Mei Wang ◽  
Dao Ji Wu

Traditional wastewater treatment methods can no longer remove effectively nitrogen and phosphorus that are the direct murderers of water eutrophication hazard. Enhanced coagulation method was adopted to improve the treatment effect by dosing suitable coagulants and coagulant aids. The raw water was from the reclaimed water in a University. TP and ammonia nitrogen removal of the water had been researched through an enhanced coagulation process with dosing ferric chloride, aluminum sulfate, polymeric ferric chloride, and poly-aluminum chloride (PAC) in this study. The coagulants effects were estimated by determining the removal rate of ammonia nitrogen, TP, COD and turbidity. When dosing the raw water with 80 mg/L PAC, the removal rates of ammonia nitrogen, TP, COD and turbidity are respectively 6.12%, 67.79%, 26.21%, 85.41%. The experimental results can be used as a reference of water treatment in the reclaimed water station.


2004 ◽  
Vol 49 (5-6) ◽  
pp. 207-214 ◽  
Author(s):  
J.J. Lee ◽  
C.U. Choi ◽  
M.J. Lee ◽  
I.H. Chung ◽  
D.S. Kim

This research is concerned with the removal of ammonia nitrogen and phosphorus in foodwaste by crystallization. Reductions have been achieved by struvite formation after the addition of magnesium ions (Mg2+). Magnesium ions used in this study were from magnesium salts of MgCl2. The results of our analysis using scanning electron microscopy and energy dispersive X-ray analysis showed that the amount of struvite in precipitated sludge grew enough to be seen with the naked eye (600-700μm). EDX analysis also showed that the main components of the struvite were magnesium and phosphorus. NH3-N removal efficiency using MgCl2 was 67% while PO4-P removal efficiency was 73%. It was confirmed that nitrogen and phosphorus could be stabilized and removal simultaneously through anaerobic digestion by Mg, NH3 and PO4-P, which were necessary for struvite formation.


2016 ◽  
Vol 74 (7) ◽  
pp. 1553-1560
Author(s):  
Kun Zhong ◽  
Yi-yong Luo ◽  
Zheng-song Wu ◽  
Qiang He ◽  
Xue-bin Hu ◽  
...  

A vertical flow constructed wetland was combined with a biological aerated filter to develop an ecological filter, and to obtain the optimal operating parameters: The hydraulic loading was 1.55 m3/(m2·d), carbon–nitrogen ratio was 10, and gas–water ratio was 6. The experimental results demonstrated considerable removal efficiency of chemical oxygen demand (COD), ammonia nitrogen (NH4+-N), total nitrogen (TN), and total phosphorus (TP) in wastewater by the ecological filter, with average removal rates of 83.79%, 93.10%, 52.90%, and 79.07%, respectively. Concentration of NH4+-N after treatment met the level-A discharge standard of GB18918-2002. Compared with non-plant filter, the ecological filter improved average removal efficiency of COD, NH4+-N, TN, and TP by 13.03%, 25.30%, 14.80%, and 2.32%, respectively: thus, plants significantly contribute to the removal of organic pollutants and nitrogen. Through microporous aeration and O2 secretion of plants, the ecological filter formed an aerobic–anaerobic–aerobic alternating environment; thus aerobic and anaerobic microbes were active and effectively removed organic pollutants. Meanwhile, nitrogen and phosphorus were directly assimilated by plants and as nutrients of microorganisms. Meanwhile, pollutants were removed through nitrification, denitrification, filtration, adsorption, and interception by the filler. High removal rates of pollutants on the ecological filter proved that it is an effective wastewater-treatment technology for decentralized wastewater of mountainous towns.


2017 ◽  
Vol 76 (2) ◽  
pp. 386-395 ◽  
Author(s):  
Te Wang ◽  
Jian Li ◽  
Ling Hua Zhang ◽  
Ying Yu ◽  
Yi Min Zhu

To improve the efficiency of simultaneous heterotrophic nitrification and aerobic denitrification (SND) at high concentrations of NaCl and ammonia nitrogen (NH4+—N), we investigated the SND characteristics of Halomonas bacteria with the ability to synthesize the compatible solute ectoine. Halomonas sp. strain B01, which was isolated, screened and identified in this study, could simultaneously remove nitrogen (N) by SND and synthesize ectoine under high NaCl conditions. Gene cloning and sequencing analysis indicated that this bacterial genome contains ammonia monooxygenase (amoA) and nitrate reductase (narH) genes. Optimal conditions for N removal in a solution containing 600 mg/L NH4+–N were as follows: sodium succinate supplied as organic carbon (C) source at a C/N ratio of 5, pH 8 and shaking culture at 90 rpm. The N removal rate was 96.0% under these conditions. The SND by Halomonas sp. strain B01 was performed in N removal medium containing 60 g/L NaCl and 4,000 mg/L NH4+–N; after 180 h the residual total inorganic N concentration was 21.7 mg/L and the N removal rate was 99.2%. Halomonas sp. strain B01, with the ability to synthesize the compatible solute ectoine, could simultaneously tolerate high concentrations of NaCl and NH4+–N and efficiently perform N removal by SND.


2011 ◽  
Vol 183-185 ◽  
pp. 432-436
Author(s):  
Xia Wang ◽  
Yong Qiang Wu

On the up-flow biological aerated filter to remove COD and NH3-N were studied the effect and contrast in various stages of finding the optimal operating conditions, so as to achieve energy conservation, the purpose of reducing operating costs. Through experiment studied that the variation of air-water ratio, hydraulic loading, organic concentration in the removal of COD and NH3-N effects, observe and analyse the change of COD and NH3-N removal and the characteristics of microorganisms of filter’s different height. The results showed that COD and NH3-N removal are high under the condition of air-water ratio 4:1~5:1, hydraulic loading 1~2 m3/ (m2●h), organic concentration 300~400 mg/L. The concentration of COD and NH3-N of effluent which are treated by biological aerated filter can meet with second degree discharging standards.


2013 ◽  
Vol 361-363 ◽  
pp. 764-767
Author(s):  
Hai Tang ◽  
Long Ouyang ◽  
Xiang Zhao

The ammonia nitrogen (NH4-N) removal enhanced by biological aerobic filter (BAF) packed with novel micro-mesoporous lightweight zeolite particles (LZP) as carrier. The results showed that the biofilm can quickly grow up using LZP as media in the BAF. HLR of 1.2 was chosen as the optimal value under the average influent NH4+-N concentration of 24.6 mg/L, percent NH4-N removal of 87% and NLR of 0.24 kgN/m3.d was achieved. The kinetic performance of the LZP-BAF indicated that the relationship of NH4-N removal efficiency with the L could be described by an exponential equation (Ce/Ci=exp (-1.24/L0.344)).


Sign in / Sign up

Export Citation Format

Share Document