scholarly journals RILEM TC "Reinforcement of Timber Elements in Existing Structures"

2013 ◽  
Vol 778 ◽  
pp. 1041-1048 ◽  
Author(s):  
Thomas Tannert ◽  
Jorge M. Branco ◽  
Mariapaola Riggio

The paper reports on the activities of the RILEM technical committee Reinforcement of Timber Elements in Existing Structures. The main objective of the committee is to coordinate the efforts to improve the reinforcement practice of timber structural elements. Recent developments related to structural reinforcements can be grouped into three categories: (i) addition of new structural systems to support the existing structure; (ii) configuration of a composite system; and (iii) incorporation of elements to increase strength and stiffness. The paper specifically deals with research carried out at the Bern University of Applied Sciences Switzerland (BFH), the University of Minho Portugal (UniMinho), and the University of Trento Italy (UNITN). Research at BFH was devoted to improve the structural performance of rounded dovetail joints by means of different reinforcement methods: i) self-tapping screws, ii) adhesive layer, and iii) a combination of self-tapping screws and adhesive layer. Research at UNITN targeted the use of dry connections for timber-to-timber composites, specifically reversible reinforcement techniques aimed at increasing the load-bearing capacity and the bending stiffness of existing timber floors. At UniMinho, double span continuous glulam slabs were strengthened with fibre-reinforced-polymers. All three examples demonstrate the improved structural performance of timber elements after reinforcing them.

2019 ◽  
Vol 817 ◽  
pp. 37-43
Author(s):  
Marialaura Malena ◽  
Marialuigia Sangirardi ◽  
Francesca Roscini ◽  
Gianmarco de Felice

Modern repairing and retrofitting methods for existing structures make use of composite materials, consisting of high strength textiles and a matrix, which can be either polymeric or inorganic. These kinds of techniques have been largely applied to masonry structures, since they significantly improve structural performance with a small increase of weight and a minimum invasiveness. However, the application of organic gluing agents on masonry has revealed some well-known drawbacks, which are almost all overcome resorting to inorganic matrixes, namely cement or lime mortars. An entire class of composites is thus identified as TRM (Textile Reinforced Mortars) or FRCM (Fibre Reinforced Cementitious Matrices). Among them, Steel Reinforced Grout (SRG) are characterized by Ultra High Tensile Strength Steel (UHTSS) cords embedded in mortar matrix and their use to improve the structural performance of existing historical masonry buildings is becoming more and more diffused. Qualification tests and acceptance criteria for SRG have just been defined. Nonetheless, numerical simulation of current available test procedures is mandatory to identify peculiar aspects of the response that at a following stage become an integral part of large scale models, when entire reinforced structures or portions need to be analysed. To this end, this work presents the numerical modelling of two different direct tensile tests on SRG systems: the Clamping-grip setup (RILEM Technical Committee 232-TDT 2016) and the Clevis-grip setup (ICC-ES AC434 2016). Numerical models able to replicate experimental tests and catch fundamental differences in their failure mechanisms are present


2018 ◽  
Vol 3 ◽  
pp. 46-58 ◽  
Author(s):  
Antonin Fabbri ◽  
Jean-Claude Morel ◽  
Domenico Gallipoli

After being almost abandoned at the end of the Second World War, the use of raw earth is currently regaining the interest of architects, engineers and policy makers for the construction of dwellings in industrialised countries. This renaissance is driven by growing ecological awareness and the promotion of construction techniques that minimize energy consumption and carbon emissions. Raw earth displays very interesting thermo-hygro-mechanical properties, which can contribute to the reduction of the environmental impact of buildings not only during construction but also during service life.  Nevertheless, one of the reasons that still prevents dissemination of raw earth into construction practice is the lack of commonly agreed procedures for assessing material performance. The RILEM technical committee TCE 274 has been established as a first step for overcoming this obstacle. The objective of the technical committee is to critically examine current testing procedures in order to propose suitable experimental standards. The results of this work will be presented in future publications while the present paper summarizes the main challenges faced by the committee and briefly describes some of the existing procedures for measuring the engineering properties of earth materials.


2010 ◽  
Vol 133-134 ◽  
pp. 271-274
Author(s):  
Bohumil Kasal ◽  
Thomas Tannert

Timber is an intriguing structural material and the only one that is truly renewable. Being biodegradable, hygroscopic and non-isotropic, it presents special challenges when assessing its integrity in structures. The presented paper outlines the major issues related to in-situ evaluation of structural timber and summarizes the work of the RILEM Technical Committee 215-AST “In-situ assessment of structural timber”. The committee was established in 2005 to bring together leading scientists and practitioners in the field of evaluation of timber in existing structures. Timber structures have been investigated for decades using numerous techniques that have been either developed specifically for the material or were transferred from other fields of investigation. A state-of-the-art report describing existing and emerging technologies and methods was prepared by the RILEM committee. The report describes the principles, the applications and the limitations of major evaluation techniques for in-situ assessment of timber. A brief discussion of codes standards and future research needs shows that much needs to be done in this area. As a present activity, harmonized test procedure recommendations are being prepared that will provide the engineering community with valuable guidance when evaluating timber structures.


2021 ◽  
Vol 11 (2) ◽  
pp. 879
Author(s):  
Eleni Tsangouri ◽  
Hasan Ismail ◽  
Matthias De Munck ◽  
Dimitrios G. Aggelis ◽  
Tine Tysmans

Internal interfacial debonding (IID) phenomena on sandwich façade insulated panels are detected and tracked by acoustic emission (AE). The panels are made of a thin and lightweight cementitious composite skin. In the lab, the panels are tested under incremental bending simulating service loads (i.e., wind). Local (up to 150 mm wide) skin-core detachments are reported in the early loading stage (at 5% of ultimate load) and are extensively investigated in this study, since IID can detrimentally affect the long-term durability of the structural element. A sudden rise in the AE hits rate and a shift in the wave features (i.e., absolute energy, amplitude, rise time) trends indicate the debonding onset. AE source localization, validated by digital image correlation (DIC) principal strains and out-of-plane full-field displacement mapping, proves that early debonding occurs instantly and leads to the onset of cracks in the cementitious skin. At higher load levels, cracking is accompanied by local debonding phenomena, as proven by RA value increases and average frequency drops, a result that extends the state-of-the-art in the fracture assessment of concrete structures (Rilem Technical Committee 212-ACD). Point (LVDT) and full-field (AE/DIC) measurements highlight the need for a continuous and full-field monitoring methodology in order to pinpoint the debonded zones, with the DIC technique accurately reporting surface phenomena while AE offers in-volume damage tracking.


2015 ◽  
Vol 825-826 ◽  
pp. 757-762 ◽  
Author(s):  
Emanuel Richter ◽  
Axel Spickenheuer ◽  
Lars Bittrich ◽  
Kai Uhlig ◽  
Gert Heinrich

A load dependent and curvilinear respectively variable-axial fibre design can notably enhance the strength and stiffness of lightweight components compared to fibre reinforced structures made of common multiaxial fibre textiles. At the Leibniz-Institut für Polymerforschung Dresden e. V. (IPF) special design strategies are in the focus of current studies. Two currently developed components made of carbon fibre reinforced plastics, a lightweight three-legged stool and a lightweight recurve bow riser, are described within this paper.


2021 ◽  
Vol 13 (13) ◽  
pp. 7373
Author(s):  
Timo Nevalainen ◽  
Jaana Seikkula-Leino ◽  
Maria Salomaa

In the past decades, there has been a growing interest in entrepreneurship education, and many higher education institutions have developed specific programs and courses to support entrepreneurial competencies. However, there have been significant changes in how universities train competences related to business skills and entrepreneurship in practice. Whereas entrepreneurship courses used to focus on the different forms of businesses and drafting business plans, the overall perception of entrepreneurship and entrepreneurial competences has shifted this toward a more holistic educational approach to develop students’ entrepreneurial competencies. In this comparative quantitative case study, we investigate the university students’ perception of the development of their entrepreneurial competencies in the case of Proakatemia (Tampere University of Applied Sciences). The aim was to examine how the entrepreneurial competencies are reflected and strengthened in their thinking and everyday functions through the concept of team learning. The survey involved, altogether, 64 students, of which 21 studied in Proakatemia. The results of this study indicate that the team learning concept of Proakatemia facilitates learning entrepreneurial competencies. Therefore, these results provide insights for universities aiming to develop their curricula, programs and pedagogy, thus promoting sustainable societal development. However, we recommend further studies, e.g., from a qualitative point of view, to assess the effective of the concept in other learning environments.


2021 ◽  
Vol 21 (3) ◽  
pp. 21-25
Author(s):  
Susanne Maier ◽  

The family-friendly university audit (“audit familiengerechte hochschule”) is studied. The audit is available to German universities in order to support a familyfriendly working environment. Practices of an auditor coordinating several workshops for rectorate, HR department and functionaries, as well as representatives of all university groups are considered. The experience of the auditing at the University of Applied Sciences – Public Administration and Finance, Ludwigsburg is analyzed.


Sign in / Sign up

Export Citation Format

Share Document