Comparison of the A²/O and Reversed A²/O Process at Low Organic Loading in Wuhan Shahu WWTP and the Optimized Program

2013 ◽  
Vol 781-784 ◽  
pp. 2003-2008
Author(s):  
Xun Wang ◽  
Lei Zhang

Based on the actual operation of Wuhan Shanhu WWTP, and combined with the actual feature of A2/O process and reversed A2/O process, this text analyzed the practical effect of which the CODcr is only 48% of the design value and the sludge load is 15.2% of the design value, and the reason for the aged-sludge and the high effluent value of NH3-N, proposed corresponding adjustment and optimized operation program. The result of optimal operation mode shows that the biodegradable organic matter content in activated sludge increases from 49% to 78%. The effluent quality is superior to the first level B criteria specified in the Discharge Standard of Pollutants for Municipal Wastewater Treatment Plant (GB 18918-2002). The electric consumption saves 0.09kWh/m.

2021 ◽  
Author(s):  
Waldir Nagel Schirmer ◽  
Erivelton César Stroparo ◽  
Marlon André Capanema ◽  
Douglas Luiz Mazur ◽  
José Fernando Thomé Jucá ◽  
...  

Abstract Biofilters have been recognized as key technology in the mitigation of greenhouse gases (GHG) emitted by landfills. This study aimed to evaluate the methane (an important GHG) oxidation efficiencies of two experimental biofilters at the municipal landfill of Guarapuava (Brazil) under normal conditions (control column), just using landfill cover soil with low organic matter content, and improved, exploiting dried scum from municipal wastewater treatment plant (SWWTP) mixed with the cover soil (enriched column, with a high organic matter content). The influence of parameters such as the methane inlet loading rates (22 and 44 gCH4.m− 2.d− 1), temperatures, methane concentration in the raw biogas, carbon/nitrogen ratio and moisture content of the packing materials on the oxidation of methane was also evaluated during 25 campaigns. The campaigns with the lowest methane loading rates applied to the biofilters showed the best methane oxidation efficiencies (98.4% and 89.5% in the enriched and control columns, respectively) as compared to campaigns with a higher load (92.6% and 82.6% in the enriched and control columns, respectively). In addition to the loading rates, the methane oxidation efficiencies were highly influenced by the organic matter content and C/N ratio of the packing materials evaluated.


2014 ◽  
Vol 1030-1032 ◽  
pp. 387-390
Author(s):  
Chun Di Gao ◽  
Shi Xin Fan ◽  
Er Long Jiao ◽  
Hao Li ◽  
Wei Xiao Wang

A novel alternating oxic-anoxic operation mode of shortcut nitrification-denitrification was developed in a sequencing batch reactor at ambient temperature. Operational parameters favorable for maintaining the shortcut nitrification-denitrification were investigated and optimized. The experiments showed that alternating oxic-anoxic shortcut nitrification-denitrification system was able to be an independent treatment process in domestic wastewater treatment. And the optimization approach was so efficient that the main pollutant discharge targets achieved Standard A of the first class in "Discharge standard of pollutants for municipal wastewater treatment plant". Moreover, the reliability of the operation strategy in this experimentation was proved, which indicated the excellent nitrogen removal performances.


1990 ◽  
Vol 22 (7-8) ◽  
pp. 45-51 ◽  
Author(s):  
R. Schönberger

At the end of 1988 a 22,000 p.e. municipal wastewater treatment plant in Northern Germany was converted to the EASC-biological phosphorus removal process. By simple modifications of the flow scheme of the plant, one of two existing primary clarifiers was converted to an anaerobic basin, into which both sewage and recycle sludge are fed. The supernatant as well as the sludge withdrawn from the bottom are discharged into the aeration basin. This operation mode achieves very good phosphorus uptake in the aeration basin. Since start up in November '88, the uptake-capacity increased continually, since April '89 phosphorus is removed down to concentrations of less than 1 mg/l PO4-P in the aeration basin. Due to an inadequate design and size of the existing final clarifier, phosphorus bleedback occurs and reduces removal efficiency. This bleedback could be minimized by either intensifying denitrification or reducing sludge detention time in the final clarifier.


Author(s):  
Jia Li ◽  
Hong Yang

Along with the development and progress of environmental protection management, it is necessary to pay full attention to the disposal of excess sludge in the process of urban sewage treatment plant management. Ensure effective integration of management mechanisms and management paths. To a certain extent, it can improve the actual efficiency of digestion and treatment work and lay a foundation for the optimal operation of environmental protection management. In this paper, the treatment of excess sludge in a sewage treatment plant is studied. The method and results of anaerobic digestion test of excess sludge in a sewage treatment plant are discussed for reference only.


1994 ◽  
Vol 30 (4) ◽  
pp. 125-132 ◽  
Author(s):  
D. Carnimeo ◽  
E. Contini ◽  
R. Di Marino ◽  
F. Donadio ◽  
L. Liberti ◽  
...  

The pilot investigation on the use of UV as an alternative disinfectant to NaOCI was started in 1992 at Trani (South Italy) municipal wastewater treatment plant (335 m3/h). The results collected after six months continuous operation enabled us to compare UV and NaOCl disinfection effectiveness on the basis of secondary effluent characteristics, quantify photoreactivation effects, evidence possible DBP formation and assess costs.


1997 ◽  
Vol 35 (6) ◽  
pp. 63-70 ◽  
Author(s):  
Yoshimasa Watanabe ◽  
Yoshihiko Iwasaki

This paper describes a pilot plant study on the performance of a hybrid small municipal wastewater treatment system consisting of a jet mixed separator(JMS) and upgraded RBC. The JMS was used as a pre-treatment of the RBC instead of the primary clarifier. The treatment capacity of the system was fixed at 100 m3/d, corresponding to the hydraulic loading to the RBC of 117 L/m2/d. The effluent from the grid chamber at a municipal wastewater treatment plant was fed into the hybrid system. The RBC was operated using the electric power produced by a solar electric generation panel with a surface area of 8 m2 under enough sunlight. In order to reduce the organic loading to the RBC, polyaluminium chloride(PAC) was added to the JMS influent to remove the colloidal and suspended organic particles. At the operational condition where the A1 dosage and hydraulic retention time of the JMS were fixed at 5 g/m3 and 45 min., respectively, the average effluent water quality of hybrid system was as follows: TOC=8 g/m3, Total BOD=8 g/m3, SS=8 g/m3, Turbidity=6 TU, NH4-N=7 g/m3, T-P=0.5 g/m3. In this operating condition, electric power consumption of the RBC for treating unit volume of wastewater is only 0.07 KWH/m3.


2014 ◽  
Vol 955-959 ◽  
pp. 3393-3399 ◽  
Author(s):  
Wei Zheng ◽  
Yan Ming Yang ◽  
Yun Long Li ◽  
Jian Qiu Zheng

The process technique and design parameters of project of Solar Ozonic Ecological Sewage Treatment Plant (short for SOESTP) which consists of anaerobic reactor, horizontal subsurface flow (HSSF) constructed wetlands(CWs) and the combination of solar power and ozone disinfection are described, the paper further examines the removal efficiency for treating rural domestic sewage, running expense and recycling ability of product water. The results show that the average percentage removal values of CODcr,BOD5,SS,TN,NH3-N,TP range from 95.6% to 98.0%, 96.0% to 98.7%, 93.1% to 96.1%, 97.0% to 98.9%, 96.9% to 99.5%, 98.2% to 99.6%, respectively, the reduction of fecal coliform (FC) reaches 99.9%, the effluent quality meets the first level A criteria specified in Discharge Standard of Pollutants for Municipal Wastewater Treatment Plant(GB18918-2002). The running cost of SOESTP is 0.063yuan/ m3, saves much more than traditional sewage treatment, and the ozone water obtained from the reservoir will be an ideal choice for disinfection .The system has characteristics of easy manipulation, low operating cost, achieving advanced water, energy conservation and environment protection, is thought to be very suitable for use as the promotion of rural small - scale sewage treatment.


Water ◽  
2021 ◽  
Vol 13 (10) ◽  
pp. 1339
Author(s):  
Javier Bayo ◽  
Sonia Olmos ◽  
Joaquín López-Castellanos

This study investigates the removal of microplastics from wastewater in an urban wastewater treatment plant located in Southeast Spain, including an oxidation ditch, rapid sand filtration, and ultraviolet disinfection. A total of 146.73 L of wastewater samples from influent and effluent were processed, following a density separation methodology, visual classification under a stereomicroscope, and FTIR analysis for polymer identification. Microplastics proved to be 72.41% of total microparticles collected, with a global removal rate of 64.26% after the tertiary treatment and within the average retention for European WWTPs. Three different shapes were identified: i.e., microfiber (79.65%), film (11.26%), and fragment (9.09%), without the identification of microbeads despite the proximity to a plastic compounding factory. Fibers were less efficiently removed (56.16%) than particulate microplastics (90.03%), suggesting that tertiary treatments clearly discriminate between forms, and reporting a daily emission of 1.6 × 107 microplastics to the environment. Year variability in microplastic burden was cushioned at the effluent, reporting a stable performance of the sewage plant. Eight different polymer families were identified, LDPE film being the most abundant form, with 10 different colors and sizes mainly between 1–2 mm. Future efforts should be dedicated to source control, plastic waste management, improvement of legislation, and specific microplastic-targeted treatment units, especially for microfiber removal.


Sign in / Sign up

Export Citation Format

Share Document