Study on Properties of Wollastonite Micro Fiber Reinforced Mortar

2013 ◽  
Vol 785-786 ◽  
pp. 151-156 ◽  
Author(s):  
Xiao Deng ◽  
Wen Yang ◽  
Xiao Qin Liu ◽  
Bao Jun Cheng ◽  
Tong Liu

The paper carried out comparative studies on the workability, mechanical properties and chloride permeation resistance of wollastonite micro fiber mortar and alkali resistant glass fiber(ARGF) mortar. The results show that the mechanical properties and chloride permeation resistance of wollastonite micro fiber mortar improve significantly. The mechanical properties of wollastonite micro fiber mortar have greater advance in 90°C humidity. The SEM analysis results show that wollastonite micro fiber can form three-dimensional skeleton in the mortar, and combine closely with cement hydration products. This can make the structure of hardened paste denser and lead to excellent properties of mortar. Meanwhile, the compressive strength of wollastonite micro fiber mortar with wollastonite micro fiber content 30%(by mass) is close to ARGF mortar with ARGF content 1.5% (in volume), but the chloride permeation resistance of wollastonite micro fiber mortar is much better.

Author(s):  
He Tian ◽  
Y. X. Zhang

In this paper, a new green fiber-reinforced cementitious composite containing high volume fly ash and hybrid steel and bagasse fibers is developed. Eco-friendly bagasse fibers from industrial waste and steel fibers are used to improve the mechanical behavior of the new composite, and high-volume fly ash is used to decrease the usage of cement in order to be more environmentally friendly. The influence of the fiber content and fly ash/cement ratio on the mechanical properties of the composite is investigated through the study of the mechanical properties of the new composite, such as compressive strength, modulus of elasticity, and modulus of rupture. It is found that compressive strength, Young's modulus of the composite, decreases with the increase of the fly ash/cement ratio and bagasse fiber content. However, the modulus of rupture of the composite increases firstly with bagasse fiber content, and decreases when bagasse fiber content reaches 3% by volume.


2014 ◽  
Vol 984-985 ◽  
pp. 360-366 ◽  
Author(s):  
S. Srinivasa Moorthy ◽  
K. Manonmani ◽  
M. Sankar Kumar

Polyester based glass fiber reinforced polymer (GFRP) composites are widely used in marine and automotive industries because of its strength to weight ratio with lower price. In order to have the better properties of GFRP composites, the particulate filler material titanium oxide (TiO2) was added in unsaturated polyester resin with the fiber reinforcement by hand lay-up process. The fiber content was kept at 35 wt% constant with the fiber length of 5 cm. The particulate was varied with 2 wt. %, 4 wt. %, 6 wt. %, 8 wt. %, and 10 wt. %. Experiments were carried out to study the mechanical properties like tensile strength, impact strength, and Rockwell hardness. The chemical resistance analysis (CRA) was carried out by weight loss method. The mechanical properties of the hybrid reinforced composites were improved due to the fiber content with increased particulate content. The influence of the particulate content was more pronounced in the chemical resistance.


2011 ◽  
Vol 181-182 ◽  
pp. 836-841
Author(s):  
Jiang Liu ◽  
Xiang Guo Liu

Influence of coupling agents on microstructure and mechanical properties of short glass fiber reinforced PA66 composites(SGF/PA66) were investigated by using twin screws extruder and injection machine in this paper. When coupling agents (A1100 or A1100+A+B) were added, short glass fiber was distributed in the PA66 matrix more homogeneously; at the same time, the microstructure and properties of GF/PA66 were improved too. Modified effect of multiple coupling agent (A1100+A+B) is better than that of only A1100 and the desired content of A1100 is about 1.5~2.0wt%. When glass fiber content was less than the critical value (35~40%), mechanical properties of PA composites increase with fiber content increasing, but it begin to decrease when content was excess that value. At last, Failure mechanism of GF/PA66 (treated by A1100 or A1100+A+B) was obtained: adhesion of interface between glass fiber and PA66 matrix, friction after the adhesion, glass fiber pullouted and matrix failure.


2019 ◽  
Vol 2019 ◽  
pp. 1-8 ◽  
Author(s):  
Jianping Zhu ◽  
Genshen Li ◽  
Chunhua Feng ◽  
Libo Wang ◽  
Wenyan Zhang

Delaminated MXene was incorporated into cement to improve the properties of cement composites, and its effects on the hydration process, microstructures, and mechanical properties were investigated, respectively. The investigation results showed that delaminated MXene was well-dispersed in the cement matrix and significantly reinforced the compressive strength of cement, especially when the addition is 0.01 wt%. Meanwhile, the total hydration heat of cement hydration and the quantity of hydration products were increased with the addition of delaminated MXene. In addition, the formation of HD C-S-H gel was promoted, and the microstructure of hydrated cement became more compact.


2018 ◽  
Vol 875 ◽  
pp. 174-178
Author(s):  
Bhawat Chaichannawatik ◽  
Athasit Sirisonthi ◽  
Qudeer Hussain ◽  
Panuwat Joyklad

This study presents results of an experimental investigation conducted to investigate the mechanical properties of sisal and glass fiber reinforced concrete. Four basic concrete mixes were considered: 1) Plain concrete (PC) containing ordinary natural aggregates without any fibers, 2) sisal fiber reinforced concrete (SFRC), 3) sisal and glass fiber reinforced concrete (SGFRC), 4, glass fiber reinforced concrete (GFRC). Investigated properties were compressive strength, splitting tensile strength, flexural tensile strength and workability. The results of fiber reinforced concrete mixes were compared with plain concrete to investigate the effect of fibers on the mechanical properties of fiber reinforced concrete. It was determined that addition of different kinds of fibers (natural and synthetic) is very useful to produce concrete. The addition of fibers was resulted into higher compressive strength, splitting and tensile strength. However, the workability of the fiber reinforced concrete was found lower than the plain concrete due to the addition of fibers in the concrete.


2013 ◽  
Vol 284-287 ◽  
pp. 1235-1241
Author(s):  
Si Yu Zou ◽  
Ran Huang ◽  
An Cheng ◽  
Wei Ting Lin ◽  
Jia Liang Chang

The study evaluates the properties of concrete mixed with inorganic silicate admixture. The admixture was used in proportions of 3%, 5%, and 7% of the weight of the cement. We performed tests on compressive strength and elastic modulus to evaluate the mechanical properties of concrete. Results show that the addition of the inorganic silicate admixture has a positive influence on the mechanical properties of concrete, with the best results obtained with 3% admixture. MIP porosity measurements determined that the addition of inorganic silicate admixture increased the density of the porous structure. SEM microscopic analysis revealed many needle-like protrusions into the porous structure of concrete. XRF chemical composition analysis indicated that these structures comprised mainly Na2O and SiO2. Can with cement hydration products Ca(OH)2 bring in Chemical reaction. Inferred pore structure Within be C-S-H gel of needle-like protruding structure. it can improve the main cause of mechanical properties of concrete.


2020 ◽  
Vol 1001 ◽  
pp. 47-52
Author(s):  
Hao Zhang ◽  
Yi Gao ◽  
Chang Hong Huang

It is studied that effects of different amounts of steel fiber and glass fiber on the compressive strength, flexural strength, and compression ratio and bond strength of styrene-acrylic emulsion modified mortar under different ages. The results show that the compressive strength, flexural strength and bond strength of mortar increase with the increase of steel fiber content, and the toughness improvement effect is obvious. With the increase of glass fiber content, mortar compressive strength, flexural strength and bond strength first increases and then decreases. Combined with SEM analysis and theoretical calculation to analyze the mechanical strength mechanism of fiber reinforced polymer mortar.


2021 ◽  
Vol 16 (4) ◽  
pp. 169-176
Author(s):  
Xiaohu Luo

In order to improve the application effect of steel fiber reinforced concrete (SFRC) in road bridge construction, the mechanical properties of SFRC with different fiber content were analyzed. The SFRC specimens with 0%, 0.5%, 1%, 1.5% and 2% fiber content were designed, and the mechanical properties were tested. The results showed that the compressive strength first increased and then decreased with the increase of fiber content, and the maximum compressive strength of SFRC1.5 reached 40.86 MPa, increasing by 7.19%; the increase amplitude of tensile strength of SFRC1.5 was 73.04%, which was the most obvious; the flexural strength of SFRC increased with the increase of fiber content, and the flexural strength of SFRC2 was 9.78 MPa, increasing by 94.43%. It is concluded from the experimental results of a case study that SFRC1.5 presents the optimal overall mechanical properties and is more suitable for road bridge construction.


Author(s):  
Behnam Akhoundi ◽  
Amir Hossein Behravesh ◽  
Arvin Bagheri Saed

In this study, an innovative method was devised and implemented to produce continuous glass fiber–reinforced thermoplastic composites via a fused deposition modeling three-dimensional printer to enhance the mechanical properties of the printed products. In the extrusion-based, or filament-based, additive manufacturing process, namely, fused deposition modeling, the parts are basically formed via deposition of the material in the molten state, and thus embedding continuous fiber, in a solid form, is highly challenging. Hence, a nozzle system was designed and manufactured to feed the continuous fiber into the molten polymer simultaneously, which is called, here, in-melt simultaneous impregnation. With the presence of continuous fibers in the nozzle outlet, the feed of filament was calculatedly adjusted in the G-codes depending on the fiber volume percentage, to produce sound flow, and consistent deposition. Composite products were produced with various geometrical shapes. Via analysis and close control of the filament feeding, as a critical requirement to produce a sound printed product, composites with various fiber volume percentages were printed. Also, the mechanical properties of the printed parts with 30% by volume of glass fiber were measured. The results of the tensile test indicated that the continuous fibers were appropriately and effectively embedded that could result in remarkable increases in tensile strength and modulus of the samples, higher than 700%. The resulted values of tensile modulus were consistent with the values calculated via the rule of mixture. In addition, scanning electron microscopic images of the fracture sections suggest a sound adhesion between fibers and the matrix.


Sign in / Sign up

Export Citation Format

Share Document