Study on Engineering Materials with the Comparison and Discussion of Support Scheme in a Foundation Pit

2013 ◽  
Vol 788 ◽  
pp. 623-626
Author(s):  
Zheng Zhen ◽  
Ren Wang Liang

Taking a deep foundation pit engineering in Taiyuan as research background, this paper used two different supporting structure of foundation pit to make numerical simulation analysis by using Li zheng software. The engineering material had high cost performance. In addition, the paper studied the displacement, bending moment, shear force with the change of the excavation depth, and it came to the conclusion that some outcome can be used for reference in the practical engineering.

2013 ◽  
Vol 788 ◽  
pp. 525-529
Author(s):  
Tao Wang ◽  
Ren Wang Liang

Since the pre-stressed anchor technology became to be used from the beginning of twentieth century, it is widely used with the advantages of its good applicability, high cost performance, good looking appearance and easy green. Pre-stressed anchor achieves the purpose of actively controlling foundation pit deformation by exerting pre-stress on steel strand of its free section. This thesis chooses deep foundation pit engineering, adopt Mohr-Coulomb ideal soil body by finite difference software FLAC3D, and select different anchor pre-tension values to simulate. It combines Lizheng software to do numerical simulation and analytic study on pile-anchor supporting structure. This thesis compares results coming from the two kinds of software, and analyze the impact on row piles' body bending moment, pile top deformation, anchor cable axial force and foundation pit deformation when pre-tension changes.


2012 ◽  
Vol 535-537 ◽  
pp. 1961-1964 ◽  
Author(s):  
Guang Dong Han ◽  
Chang Sheng Guan ◽  
Ji Cheng

The finite element analysis software, during the pouring of concrete for the temperature field and stress field in a numerical simulation analysis. Analysis showed that the concrete core temperature changes greater maximum thermal stress in mass concrete bottom and around the site and soil transfer, far less than the concrete tensile stress, the temperature will not crack.


2013 ◽  
Vol 443 ◽  
pp. 79-83
Author(s):  
Zhen Xi Yu

In recent years, with the enhancement of overall national strength in China, the computer simulation technology has been developed rapidly and widely applied to engineering construction. Particularly, investment proportion of the technology in deep foundation pit engineering is immense. Yet affected by national conditions in China, the construction and application of deep foundation pit engineering have many extensive factors. It also results in insufficient vigor of finite element analysis of deep foundation pit support construction. In this way, construction problems arise frequently under the condition that there exist buildings around. With some deep foundation pit support engineering, the thesis conducts simulation analysis of the engineering through the technology of nonlinear three-dimensional finite element.Project profile


2019 ◽  
Vol 2019 ◽  
pp. 1-10 ◽  
Author(s):  
Mingfeng Lei ◽  
Linghui Liu ◽  
Yuexiang Lin ◽  
Jin Li

During deep foundation pit construction, the structural clearance intrusion, which is caused by the complex formation conditions and the inefficient drilling equipment, is usually detected due to the vertical deviation of piles. To meet construction requirements, pile parts intruding into the structural clearance are supposed to be excised. However, the sectional flexural strength of the pile is bound to decrease with partial excision, which would reduce the bearing capacity of the enclosing structure during construction. In this paper, a theoretical derivation of the normal sectional flexural strength of the partially excised circular pile is proposed. The derivation adopts the assumption of the plane section and steel ring equivalence and can be solved by the bisection method. Furthermore, the calculation method is applied to the pile evaluation of a practical engineering; also, the method is verified by the numerical method. The application results show that the excision of rebar and pile’s sectional area will cause a rapid linear decline in the sectional flexural strength. After excising 18 cm radial thickness of the circular pile (ϕ800 mm) and 6 longitudinal rebars, the sectional flexural strength of the pile decreases to 58% from the origin, which cannot meet the support requirement. The analysis indicates that pile reinforcements must be carried out to maintain the construction safety.


2010 ◽  
Vol 44-47 ◽  
pp. 173-176
Author(s):  
Dong Ming Yu ◽  
Zhi Qin Liu ◽  
Feng Guang Chen

The supporting piles of deep foundation pits are usually made in reinforced concrete materials and rarely in prestressed concrete materials. But prestressed concrete materials have higher stiffness and less deformation and are suitable for controlling displacements or settlements. So, in this paper a practical engineering project as an example, the prestressed concrete supporting piles of the deep foundation pit are calculated and designed. Then, the settlement and inclination of the building adjacent the foundation pit with the prestressed concrete piles are calculated in the numerical software, FLAC. The results calculated in FLAC are compared with the actual settlement and inclination of the adjacent building during the foundation pit is excavated. The comparison confirms the feasibility of the supporting structure. This is a useful trial on the design of the prestressed concrete supporting piles.


2010 ◽  
Vol 114 (3-4) ◽  
pp. 251-260 ◽  
Author(s):  
Nianqing Zhou ◽  
Pieter A. Vermeer ◽  
Rongxiang Lou ◽  
Yiqun Tang ◽  
Simin Jiang

2013 ◽  
Vol 671-674 ◽  
pp. 101-104
Author(s):  
Dong Dong Zhang ◽  
Jun Wen Ding ◽  
Rong Biao Wang

The studies application of deep foundation pit decompression technology focusing on special engineering geological and hydrogeological conditions. Taking foundation pit dewatering of certain rail transit station as an example, designs deep foundation pit decompression precipitation technology scheme with hydrogeological parameters obtained through pumping test, and assesses and monitors its impacts on surrounding environment according to measured data on project site, which has achieved good results in practical engineering application and provides foundation for construction of rail transit lines.


2014 ◽  
Vol 638-640 ◽  
pp. 507-511
Author(s):  
Chong Ma ◽  
Xin Gang Wang ◽  
Bin Hu ◽  
Hong Bing Zhan

The rapid development of deep foundation pit engineering, has become an important part of the urbanization construction, which brings deep excavation support of geotechnical engineering problem research also became a major issue. This paper uses the international well-known geotechnical engineering numerical simulation software FLAC3D, through 3D finite difference numerical calculation and analysis, to better simulation calculation and analysis of deep foundation pit construction site condition, forecast after excavation of the deep foundation pit deformation displacement and dangerous position, analysis of deep foundation pit excavation process isolation pile - steel shotcrete combined support effect. Three dimensional numerical model analysis and calculation in deep foundation pit engineering design and construction scheme optimization with economy is convenient wait for a obvious advantages, can for deep foundation pit excavation of deep foundation pit support design and construction to provide effective basis.


Sign in / Sign up

Export Citation Format

Share Document