Effects of Attapulgite on the Isothermal Crystallization Behavior of Poly(Butylene Succinate-co-Butylene Adipate)

2013 ◽  
Vol 791-793 ◽  
pp. 56-59
Author(s):  
Zhi Guo Qi ◽  
Jin Nan Chen ◽  
Bao Hua Guo ◽  
Yu Zhang

Poly (butylene succinate-co-butylene adipate)/attapulgite nanocomposites were prepared by melt mixing in a HAAKE mixer. The crystallization kinetics of PBSA and its nanocomposites was studied under isothermal conditions by differential scanning calorimetr. The isothermal crystallization kinetics results indicated that attapulgite can induce heterogeneous nucleation, resulting in an improvement on the crystallization temperature and crystallization rate. Both the PBSA and its nanocomposites were correlated to the spherulitic growth form.

2015 ◽  
Vol 1120-1121 ◽  
pp. 624-627
Author(s):  
Kun Yan Wang

PTT/EVA-g-MA (80/20 w/w) nanocomposites were prepared by the melt mixing with different organoclay (OMMT) loading. The effect of OMMT on the non-isothermal crystallization kinetics of composites was investigated by DSC. The Avrami and Ozawa methods were used to describe the non-isothermal crystallization process of pure PTT and composites with various loading of OMMT. The Avrami analysis results show that the crystallization rate of 80/20 (w/w) PTT/EVA-g-MA blends with the OMMT is faster than that of pure PTT. The Ozawa analysis can describe the non-isothermal crystallization of pure PTT very well, but it was rather inapplicable for the 80/20 (w/w) PTT/EVA-g-MA blends with various amounts of the clay.


Polymers ◽  
2021 ◽  
Vol 13 (4) ◽  
pp. 648
Author(s):  
Xiangning Wen ◽  
Yunlan Su ◽  
Shaofan Li ◽  
Weilong Ju ◽  
Dujin Wang

In this work, the crystallization kinetics of poly(ethylene oxide) (PEO) matrix included with poly(ethylene glycol) (PEG) grafted silica (PEG-g-SiO2) nanoparticles and bare SiO2 were systematically investigated by differential scanning calorimetry (DSC) and polarized light optical microscopy (PLOM) method. PEG-g-SiO2 can significantly increase the crystallinity and crystallization temperature of PEO matrix under the non-isothermal crystallization process. Pronounced effects of PEG-g-SiO2 on the crystalline morphology and crystallization rate of PEO were further characterized by employing spherulitic morphological observation and isothermal crystallization kinetics analysis. In contrast to the bare SiO2, PEG-g-SiO2 can be well dispersed in PEO matrix at low P/N (P: Molecular weight of matrix chains, N: Molecular weight of grafted chains), which is a key factor to enhance the primary nucleation rate. In particular, we found that the addition of PEG-g-SiO2 slows the spherulitic growth fronts compared to the neat PEO. It is speculated that the interfacial structure of the grafted PEG plays a key role in the formation of nuclei sites, thus ultimately determines the crystallization behavior of PEO PNCs and enhances the overall crystallization rate of the PEO nanocomposites.


2019 ◽  
Vol 41 (3) ◽  
pp. 394-394
Author(s):  
Zhi Qiang Wang Zhi Qiang Wang ◽  
Yong Ke Zhao and Xiang Feng Wu Yong Ke Zhao and Xiang Feng Wu

The hybrids combined by nano-materials with different dimensions usually possess much better enhancement effects than single one. Graphene oxide-carbon nanotubes hybrids / polyamide 6 composites has been fabricated. The non-isothermal crystallization kinetics of the as-prepared samples was discussed. Research results showed that increasing the cooling rate was in favor of increasing the crystallization rate and the degree of crystallinity for the as-prepared samples. Moreover, the crystallization rate was first decreased and then increased with increasing the hybrids loading. Furthermore, the crystallization mechanism was changed with increasing the crystallization temperature and the cooling rate. The nucleation and growth modes of the non-isothermal crystallization could be classified into three different types, according to the Ozawa’s theory. These complicated results could be attributed to the important role of crystallization rate as well as the simultaneous hindering and promoting effects of the as-prepared hybrids. This work has reference values for understanding the crystallization kinetics of the polyamide 6-based composites.


2005 ◽  
Vol 13 (1) ◽  
pp. 61-71 ◽  
Author(s):  
Defeng Wu ◽  
Chixing Zhou ◽  
Xie Fan ◽  
Dalian Mao ◽  
Zhang Bian

The melt intercalation method was employed to prepare poly(butylene terepathalate)/montmorillonite nanocomposites, and their microstructure was characterized by wide angle X-ray diffraction and transmission electron microscopy. The XRD results showed that the crystalline plane such as (010), (111), (100) was smaller than that of pristine PBT, which indicates that the crystallite size of PBT in the nanocomposites could be diminished by adding clay. Moreover, the isothermal crystallization kinetics of PBT and PBT/MMT nanocomposites was investigated by differential scanning calorimetry (DSC). During isothermal crystallization, the development of crystallinity with time was analysed by the Avrami equation. The results show that very small amounts of clay dramatically increased the rate of crystallization and high clay concentrations reduced the rate of crystallization at the low crystallization temperatures. At low concentrations of clay, the distance between dispersed platelets was large so it was relatively easy for the additional nucleation sites to incorporate surrounding polymer, and the crystal nucleus was formatted easily. However, at high concentrations of clay, the diffusion of polymer chains to the growing crystallites was hindered by large clay particles, despite the formation of additional nucleation sites by the clay layers. At the higher crystallization temperature, the crystallization of the nanocomposites was slower than that of the pure PBT under the experimental conditions, which means that with the increase in chains mobility at the high crystallization temperature, the crystal nuclei are harder to format, and the hindering effect of clay particles on the polymer chains was stronger than the nucleating effect of the layers. In addition, the activation energies of crystallization for PBT and its nanocomposites were calculated by the Arrhenius relationship, and the results showed that the nanocomposites with a low clay content had the lower activation energy values than PBT, while high amounts of clay increased the activation energy of PBT.


Polymers ◽  
2018 ◽  
Vol 10 (4) ◽  
pp. 424 ◽  
Author(s):  
Thandi Gumede ◽  
Adriaan Luyt ◽  
Ricardo Pérez-Camargo ◽  
Agnieszka Tercjak ◽  
Alejandro Müller

2012 ◽  
Vol 535-537 ◽  
pp. 1142-1145
Author(s):  
Guang Tian Liu ◽  
Jing Lei

In this paper, the isothermal crystallization kinetics of isotactic polypropylene (iPP) and iPP with 5% hyperbranched polymer (HBP) added had been investigated by differential scanning calorimetry (DSC). The results show that a small addition of HBP affects the crystallization behavior of iPP. During isothermal crystallization, the crystallization rate of the blend is higher than those of iPP remarkably. An increase in the Avrami exponent may be attributed to the fractal structure of hyperbranched polymer. The crystallization activation energy is estimated by the Friedman equation, the results show that the activation energy decreases remarkably by addition of HBP and the crystallization rate of the blend is more sensitive to temperature than that of iPP.


2011 ◽  
Vol 396-398 ◽  
pp. 1688-1691
Author(s):  
Qing Chun Fan ◽  
Fei Hong Duan ◽  
Huai Bing Guo ◽  
Tian Wu

The isothermal crystallization kinetics of PP with different contents of AB2 hyperbranched polyester(HBP) added has been investigated. The results show that HBP acts as a nucleating agent for PP, and the hyperbranched polyester can decrease the half crystallization time (t1/2) and increase the crystallization rate of PP greatly. The Avrami exponents of PP and nucleated PP are all close to 2.5. Hoffman theory was adopted to calculate the interfacial free energy per unit area perpendicular to PP chains σe of PP and PP/HBP blends.


Sign in / Sign up

Export Citation Format

Share Document