Welding of Stainless Steel - A Heavy Engineering Perspective

2013 ◽  
Vol 794 ◽  
pp. 380-390
Author(s):  
Krishnan Sivaraman ◽  
Dileep Kulkarni

Stainless steels are engineering materials capable of meeting a wide range of design criteria. They exhibit excellent corrosion resistance, strength at elevated temperature, toughness at cryogenic temperature and fabrication characteristics, and they are selected for a broad range of consumer, commercial, and industrial applications. In the fabrication of stainless steel products, components, or equipment, manufacturers employ welding as the principal joining method. Stainless steels possess good weldability and a welded joint can provide optimum corrosion resistance, strength, and fabrication economy provided reasonable care is exercised during welding. L&T's Heavy Engineering (HE) has established a reputation for quality products in the global market with its strong engineering capabilities and state-of-the-art manufacturing facilities. It manufactures and supplies various critical equipments like reactors, vessels, heat exchangers and inter-connecting piping to Fertilizer, Refinery, Petrochemical, Chemical, Oil & Gas, Power, Nuclear and allied Strategic sectors. The wide spectrum of equipments mentioned involves fabrication of various grades of Stainless Steel (SS)like Austenitic, Ferritic, Martensitic, Duplex, Super Duplex etc. This paper discusses some of the high productivity welding processes and the techniques being used in manufacturing Stainless Steel vessels at Larsen & Toubro’s Heavy Engineering such as: Narrow groove welding of high thickness SS joints by Submerged Arc Welding(SAW), High deposition SS weld surfacing using Electro Slag Strip Cladding (ESSC), Hotwire GTAW for joining & surfacing of SS, SS Liner welding by GTAW for critical Urea Service applications, Automatic Tube to Tube sheet Welding etc.

Author(s):  
G. Ubertalli ◽  
M. Ferraris ◽  
P. Matteis ◽  
D. Di Saverio

Lean duplex stainless steels have similar corrosion and better mechanical properties than the austenitic grades, which ensure their extensive spreading in industrial applications as a substitute of austenitic grades. In the construction of liquid tanks, however, it is often necessary to weld such steels with a range of fittings which are commonly fabricated with austenitic stainless steel grades. Therefore, this paper examines dissimilar welded joints between LDX 2101 (or X2CrMnNiN22-5-2) lean duplex stainless steels plates and austenitic stainless steel pipes, carried out by different arc welding processes. The investigation focuses on the correlation between the welding procedures and the microstructural and mechanical properties of the welded joints.


1974 ◽  
Vol 37 (12) ◽  
pp. 612-617
Author(s):  
Bruno Werra

This paper discusses the relation of “Materials” to 3-A Standards; “Passivity” defined; corrosion resistance of stainless steels; “Free Iron”; “Austenite” defined; analyses; corrosion resistance data; corrosion phenomena; carbide precipitation affect; Galvanic Series; least “noble” (anodic), “active,” and sacrificial; most “noble” (cathodic), “least active,” and least readily sacrificial; welding processes; stainless steel finishes and surface finishes for sanitary food equipment; 3-A Standards resume and explanation of their intent: cleanliness for bacteriological and anti-corrosion reasons.


Alloy Digest ◽  
1979 ◽  
Vol 28 (4) ◽  

Abstract EASTERN STAINLESS Type 317LM is an austenitic chromium-nickel stainless steel containing low carbon (0.03% max.) and relatively high molybdenum (4.00 to 4.5%). It was developed primarily to provide more resistance to attack by sulfurous acid than is provided by competitive conventional stainless steels. Its good corrosion resistance has extended its use to many other industrial applications. This datasheet provides information on composition, physical properties, hardness, elasticity, and tensile properties as well as creep. It also includes information on corrosion resistance as well as forming, heat treating, machining, and joining. Filing Code: SS-363. Producer or source: Eastern Stainless Steel Company.


Alloy Digest ◽  
1984 ◽  
Vol 33 (11) ◽  

Abstract EASTERN STAINLESS Type 317L is an austenitic chromium-nickel stainless containing low carbon (0.03% max.) and an addition of molybdenum (3.00-4.00%). This steel was developed primarily to resist more effectively the attack by sulfurous acid than is provided by some of the other competitive stainless steels. Its proven ability to resist corrosion had broadened its use considerably and now it is used for many other industrial applications. This datasheet provides information on composition, physical properties, hardness, elasticity, and tensile properties as well as creep. It also includes information on high temperature performance and corrosion resistance as well as forming, heat treating, machining, and joining. Filing Code: SS-453. Producer or source: Eastern Stainless Steel Company.


2013 ◽  
Vol 794 ◽  
pp. 230-237 ◽  
Author(s):  
K. Chandra Sekhar ◽  
Bhagwati Prasad Kashyap ◽  
Sandeep Sangal

Stainless steels such as ferrritic, austenitic, martensitic and duplex stainless steels are well known for their corrosion resistance to varying extents. Among these, austenitic stainless steels exhibit superior corrosion resistance and better ductility for formability. Therefore, the ability to give simple to intricate shapes in this grade of steel brings their potential for a wide range of applications. However, the meta-stable austenite in AISI 304 is known to undergo a strain induced martensitic (SIM) transformation during conventional rolling at room temperature. This strain induced martensite causes reduction in ductility and limits formability of stainless steel. Therefore, wavy rolling technique was developed to strengthen the stainless steel through microstructural refinement. In the current study, wavy rolling with 1.5 mm amplitude was conducted on 1 mm thick stainless steel sheet to different cycles ranging from 1-4. These rolled samples were characterized by optical and Atomic Force Microscopy (AFM) with resolutions down to the nanolevel. This AFM tool is in a position to bring out the details of grain refinement and topographical roughness emerging from crystalline and microstructural defects like orientation, precipitation, stacking faults, deformation bands, slip lines and shear bands with progress in rolling as referred by the number of rolling cycles here. The structural development is semi-quantitatively related to the degree of deformation and its effect on tensile properties during wavy rolling cycle. Keywords: Structural properties; Roughness; Deformation; Wavy rolling.


Metals ◽  
2018 ◽  
Vol 8 (12) ◽  
pp. 1074 ◽  
Author(s):  
Claudio Gennari ◽  
Mattia Lago ◽  
Balint Bögre ◽  
Istvan Meszaros ◽  
Irene Calliari ◽  
...  

The main goal of this work was to study the effect of plastic deformation on weldability of duplex stainless steel (DSS). It is well known that plastic deformation prior to thermal cycles can enhance secondary phase precipitation in DSS which can lead to significant change of the ferrite-austenite phase ratio. From this point of view one of the most important phase transformation in DSS is the eutectoid decomposition of ferrite. Duplex stainless steels (DSSs) are a category of stainless steels which are employed in all kinds of applications where high strength and excellent corrosion resistance are both required. This favorable combination of properties is provided by their biphasic microstructure, consisting of ferrite and austenite in approximately equal volume fractions. Nevertheless, these materials may suffer from several microstructural transformations if they undergo heat treatments, welding processes or thermal cycles. These transformations modify the balanced phase ratio, compromising the corrosion and mechanical properties of the material. In this paper, the microstructural stability as a consequence of heat history due to welding processes has been investigated for a super duplex stainless steel (SDSS) UNS S32750. During this work, the effects of laser beam welding on cold rolled UNS S32750 SDSS have been investigated. Samples have been cold rolled at different thickness reduction (ε = 9.6%, 21.1%, 29.6%, 39.4%, 49.5%, and 60.3%) and then welded using Nd:YAG laser. Optical and electronical microscopy, eddy’s current tests, microhardness tests, and critical pitting temperature tests have been performed on the welded samples to analyze the microstructure, ferrite content, hardness, and corrosion resistance. Results show that laser welded joints had a strongly unbalanced microstructure, mostly consisting of ferritic phase (~60%). Ferrite content decreases with increasing distance from the middle of the joint. The heat-affected zone (HAZ) was almost undetectable and no defects or secondary phases have been observed. Both hardness and corrosion susceptibility of the joints increase. Plastic deformation had no effects on microstructure, hardness or corrosion resistance of the joints, but resulted in higher hardness of the base material. Cold rolling process instead, influences the corrosion resistance of the base material.


Metals ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 836
Author(s):  
Roger Francis ◽  
Glenn Byrne

Duplex stainless steels were first manufactured early in the 20th century, but it was the introduction in the 1970s of the argon-oxygen decarburisation (AOD) steel making process and the addition of nitrogen to these steels, that made the alloys stronger, more weldable and more corrosion resistant. Today, duplex stainless steels can be categorised into four main groups, i.e., “lean”, “standard”, “super”, and “hyper” duplex types. These groups cover a range of compositions and properties, but they all have in common a microstructure consisting of roughly equal proportions of austenite and ferrite, high strength, good toughness and good corrosion resistance, especially to stress corrosion cracking (SCC) compared with similar austenitic stainless steels. Moreover, the development of a duplex stainless-steel microstructure requires lower levels of nickel in the composition than for a corresponding austenitic stainless steel with comparable pitting and crevice corrosion resistance, hence they cost less. This makes duplex stainless steels a very versatile and attractive group of alloys both commercially and technically. There are applications where duplex grades can be used as lower cost through-life options, in preference to coated carbon steels, a range of other stainless steels, and in some cases nickel alloys. This cost benefit is further emphasised if the design engineer can use the higher strength of duplex grades to construct vessels and pipework of lower wall thickness than would be the case if an austenitic grade or nickel alloy was being used. Hence, we find duplex stainless steels are widely used in many industries. In this paper their use in three industrial applications is reviewed, namely marine, heat exchangers, and the chemical and process industries. The corrosion resistance in the relevant fluids is discussed and some case histories highlight both successes and potential problems with duplex alloys in these industries. The paper shows how duplex stainless steels can provide cost-effective solutions in corrosive environments, and why they will be a standard corrosion resistant alloy (CRA) for many industries through the 21st century.


2021 ◽  
Vol 11 (12) ◽  
pp. 1901-1925
Author(s):  
Shuai Li ◽  
Chengsong Zhang ◽  
Jiping Lu ◽  
Ruiduo Chen ◽  
Dazhi Chen ◽  
...  

High nitrogen austenitic stainless steels are commonly used in wide range of applications because of their excellent properties, attracting super attention over the past decades. Compared with other metal materials, high nitrogen austenitic stainless steel increases the nitrogen content under the premise that the structure is austenite, giving it excellent mechanical properties and corrosion resistance. Based on relevant documents from the past ten years, this article summarizes and compares three preparation methods for high nitrogen austenitic stainless steels, namely: powder nitriding, melt nitriding and bulk nitriding. They can be divided into six categories according to other differences as explained by the latest research progress on strengthening and toughening mechanism for high nitrogen austenitic stainless steels: composite structure strengthening, fine grain strengthening, precipitation strengthening and strain strengthening. This article also reviews the research progress on excellent properties of high nitrogen stainless steel, including strength, hardness and corrosion resistance. It further describes the emerging nickel-free high nitrogen austenitic stainless steels and its biocompatibility. Welding applications of high nitrogen austenitic stainless steels are also described from three aspects: friction stir welding, arc welding and brass solder. Finally, this article puts forward the development direction of high nitrogen austenitic stainless steels in the future.


Author(s):  
Hebert Roberto da Silva ◽  
Valtair Antonio Ferraresi ◽  
Rosenda Valdes Arencibia

The GMAW process using two wires is an alternative to a coating process when high productivity is desired. The potential variants emerging from this process are GMAW cold wire and GMAW double wire. One of the greatest difficulties is the setting of its parameters, which duplication compared to conventional GMAW and also act in a dependent manner. A greater understanding of the technology applied to coatings on turbines in various positions is critical to master the process and its variables for enhancing industrial applications. This study involves an experimental evaluation to verify the influence of some variables on the profile of cord and wear resistance. This paper proposes making deposits with weld metal AWS 308LSi stainless steel and alloys of cobalt (Stellite 6 and 21) plates in carbon steel SAE 1020 in the flat positions. The wear characterization in the lining is used to determine the hardness and surface topography. It is concluded that cobalt alloys have superior resistance to erosive damage, with emphasis on Stellite 21 with respect to erosion and Stellite 6 with respect to cavitation. Mixtures of austenitic stainless steel and cobalt alloys have intermediate wear values. Therefore, it is essential to study welding processes with multiple wires, as proposed in this paper, to determine the optimal combination of alloys for resistance to cavitation-erosion phenomena.


Alloy Digest ◽  
1961 ◽  
Vol 10 (12) ◽  

Abstract AISI Types 303 and 303 Se austenitic chromium nickel stainless steels to which elements have been added to improve machining and non-seizing characteristics. They are the most readily machinable of all the austenitic chromium nickel grades and are suitable for use in automatic screw machines. They are widely used to minimize seizing and galling. This datasheet provides information on composition, physical properties, hardness, elasticity, and tensile properties as well as fracture toughness, creep, and fatigue. It also includes information on high temperature performance and corrosion resistance as well as forming, heat treating, machining, and joining. Filing Code: SS-126. Producer or source: Stainless steel mills.


Sign in / Sign up

Export Citation Format

Share Document