Research of Feature Model Constructing Techniques for Diesel Engine Based on EON Platform

2013 ◽  
Vol 805-806 ◽  
pp. 1740-1745
Author(s):  
Jian Zhao Zhou ◽  
Xiao Pan Xu ◽  
Wei Jun Chu ◽  
Ju Ying Dai ◽  
Si Wei Lai

The vivid expression of entity models in the virtual circumstance is directly related to the facticity and immersion of the virtual environment. To build the virtual maintenance training system for Cummins M11 diesel engine, this paper primarily designed the functions of the system, studied the constructing and optimizing techniques of 3D models. Using EON platform, these 3D models were secondarily constructed to achieve the pre-designed functions, and realize the real-time interactive simulation. The experiments show that synthetically using these VR constructing techniques can overcome the limitations of single modeling method, and brilliantly make the simulation environment more realistic and familiar to the trainees, achieving good training results.

2013 ◽  
Vol 805-806 ◽  
pp. 1911-1916 ◽  
Author(s):  
Jian Zhao Zhou ◽  
Xiao Pan Xu ◽  
Zi Cheng Zhu ◽  
Wei Jun Chu ◽  
Ting Xu ◽  
...  

Collision detection can effectively improve the authenticity, credibility and immersion of the virtual simulation environment. So this article mainly analyzed several classic collision detection algorithms, and put forward to use K-DOPS method in virtual maintenance system. Through EON simulation platform, the execution results of the algorithm were tested. The results show that the use of K-DOPS algorithm in collision detection can real-timely avoid collision and penetration between the part models in virtual maintenance training system for diesel engine, brilliantly enhancing the authenticity and immersion of the simulation environment.


2021 ◽  
Vol 2 ◽  
Author(s):  
Michail Pavlou ◽  
Dimitrios Laskos ◽  
Evangelia I. Zacharaki ◽  
Konstantinos Risvas ◽  
Konstantinos Moustakas

The use of virtual reality (VR) techniques for industrial training provides a safe and cost effective solution that contributes to increased engagement and knowledge retention levels. However, the process of experiential learning in a virtual world without biophysical constraints might contribute to muscle strain and discomfort, if ergonomic risk factors are not considered in advance. Under this scope, we have developed a digital platform which employs extended reality (XR) technologies for the creation and delivery of industrial training programs, by taking into account the users and workplace specificities through the adaptation of the 3D virtual world to the real environment. Our conceptual framework is composed of several inter-related modules: 1) the XR tutorial creation module, for automatic recognition of the sequence of actions composing a complex scenario while this is demonstrated by the educator in VR, 2) the XR tutorial execution module, for the delivery of visually guided and personalized XR training experiences, 3) the digital human model (DHM) based simulation module for creation and demonstration of job task simulations avoiding the need of an actual user and 4) the biophysics assessment module for ergonomics analysis given the input received from the other modules. Three-dimensional reconstruction and aligned projection of the objects situated in the real scene facilitated the imposition of inherent physical constraints, thereby allowed to seamlessly blend the virtual with the real world without losing the sense of presence.


2013 ◽  
Vol 373-375 ◽  
pp. 888-891
Author(s):  
Fang Liu ◽  
Wei Tong ◽  
Zhi Jun Qian ◽  
Yu Hong Dong

This paper introduced the laboratory model of Real-time monitor system based on the 3D Visualization for calefaction furnace, depicted the process of the model.In this paper we created a virtual environment and transport the real-time data which we collected from the locale to the virtual scene,to realize the real time monitor on the real environment.Through simulating in the lab,the effect of this system was realistic at the same time it arrived at the goal of better monitoring with better real-time.


Cardiology ◽  
2016 ◽  
Vol 135 (4) ◽  
pp. 255-261 ◽  
Author(s):  
Peng Liu ◽  
Rijing Liu ◽  
Yan Zhang ◽  
Yingfeng Liu ◽  
Xiaoming Tang ◽  
...  

Aims and Objectives: The objective of this study was to assess the clinical feasibility of generating 3D printing models of left atrial appendage (LAA) using real-time 3D transesophageal echocardiogram (TEE) data for preoperative reference of LAA occlusion. Background: Percutaneous LAA occlusion can effectively prevent patients with atrial fibrillation from stroke. However, the anatomical structure of LAA is so complicated that adequate information of its structure is essential for successful LAA occlusion. Emerging 3D printing technology has the demonstrated potential to structure more accurately than conventional imaging modalities by creating tangible patient-specific models. Typically, 3D printing data sets are acquired from CT and MRI, which may involve intravenous contrast, sedation, and ionizing radiation. It has been reported that 3D models of LAA were successfully created by the data acquired from CT. However, 3D printing of the LAA using real-time 3D TEE data has not yet been explored. Methods: Acquisition of 3D transesophageal echocardiographic data from 8 patients with atrial fibrillation was performed using the Philips EPIQ7 ultrasound system. Raw echocardiographic image data were opened in Philips QLAB and converted to ‘Cartesian DICOM' format and imported into Mimics® software to create 3D models of LAA, which were printed using a rubber-like material. The printed 3D models were then used for preoperative reference and procedural simulation in LAA occlusion. Results: We successfully printed LAAs of 8 patients. Each LAA costs approximately CNY 800-1,000 and the total process takes 16-17 h. Seven of the 8 Watchman devices predicted by preprocedural 2D TEE images were of the same sizes as those placed in the real operation. Interestingly, 3D printing models were highly reflective of the shape and size of LAAs, and all device sizes predicted by the 3D printing model were fully consistent with those placed in the real operation. Also, the 3D printed model could predict operating difficulty and the presence of a peridevice leak. Conclusions: 3D printing of the LAA using real-time 3D transesophageal echocardiographic data has a perfect and rapid application in LAA occlusion to assist with physician planning and decision making.


2021 ◽  
Author(s):  
Ezgi Pelin Yildiz

Augmented reality is defined as the technology in which virtual objects are blended with the real world and also interact with each other. Although augmented reality applications are used in many areas, the most important of these areas is the field of education. AR technology allows the combination of real objects and virtual information in order to increase students’ interaction with physical environments and facilitate their learning. Developing technology enables students to learn complex topics in a fun and easy way through virtual reality devices. Students interact with objects in the virtual environment and can learn more about it. For example; by organizing digital tours to a museum or zoo in a completely different country, lessons can be taught in the company of a teacher as if they were there at that moment. In the light of all these, this study is a compilation study. In this context, augmented reality technologies were introduced and attention was drawn to their use in different fields of education with their examples. As a suggestion at the end of the study, it was emphasized that the prepared sections should be carefully read by the educators and put into practice in their lessons. In addition it was also pointed out that it should be preferred in order to communicate effectively with students by interacting in real time, especially during the pandemic process.


Sign in / Sign up

Export Citation Format

Share Document