A Curled Piezoelectric Cantilever for Two Dimensional Vibration Energy Harvesting

2013 ◽  
Vol 811 ◽  
pp. 469-473
Author(s):  
Xue Feng He ◽  
Yao Qing Cheng ◽  
Jun Gao ◽  
You Zhu

To harvest ambient vibration energy of different directions, a micromachined vibration energy harvester which can harvest two-dimensional vibration energy was proposed. The harvester is composed of a curled piezoelectric cantilever, a proof mass and the substrate. One end of the cantilever is fixed onto the substrate and the other end is connected with a proof mass. It is the residual stress of micromachining processes that causes the cantilever to curl. A proof-of-concept prototype of the two-dimensional vibration energy harvester was assembled and tested to evaluate the performance. Experimental results show that the vibration direction with the highest energy scavenging efficiency changed with the frequency of the ambient vibration. The vibration energy of any direction in the neutral plane of the curled cantilever can be harvested by using the first two natural vibration modes of the prototype.

2011 ◽  
Vol 483 ◽  
pp. 626-630 ◽  
Author(s):  
Hua An Ma ◽  
Jing Quan Liu ◽  
Gang Tang ◽  
Chun Sheng Yang ◽  
Yi Gui Li ◽  
...  

As the low-power wireless sensor components and the development of micro electromechanical systems, long-term supply of components is a major obstacle of their development. One of solutions to this problem is based on the environmental energy collection of piezoelectric vibration energy harvesting. Currently, frequency band of piezoelectric vibration energy harvester is narrow and the frequency is high, which is not fit for the vibration energy acquisition in the natural environment. A piezoelectric vibration energy harvester with lower working frequency and broader band is designed and a test system to analyze the harvester is presented in this paper. The traditional mass is replaced by a permanent magnet in this paper, While other two permanent magnets are also placed on the upper and above of the piezoelectric cantilever. Experiments showed, under the 0.5g acceleration, compared with the traditional non-magnetic piezoelectric vibration energy harvesting, a piezoelectric cantilever (length 40mm, width 8mm, thickness 0.8mm) has a peak-peak voltage of 32.4V, effectively enlarges working frequency band from 67HZ-105HZ to 63HZ-108HZ.


2016 ◽  
Vol 139 (1) ◽  
Author(s):  
Cevat Volkan Karadag ◽  
Nezih Topaloglu

In this paper, a novel smart vibration energy harvester (VEH) is presented. The harvester automatically adjusts its natural frequency to stay in resonance with ambient vibration. The proposed harvester consists of two piezoelectric cantilever beams, a tiny piezomotor with a movable mass attached to one of the beams, a control unit, and electronics. Thanks to its self-locking feature, the piezomotor does not require energy to fix its movable part, resulting in an improvement in overall energy demand. The operation of the system is optimized in order to maximize the energy efficiency. At each predefined interval, the control unit wakes up, calculates the phase difference between two beams, and if necessary, actuates the piezomotor to move its mass in the appropriate direction. It is shown that the proposed tuning algorithm successfully increases the fractional bandwidth of the harvester from 4% to 10%. The system is able to deliver 83.4% of the total harvested power into usable electrical power, while the piezomotor uses only 2.4% of the harvested power. The presented efficient, autotunable, and self-sufficient harvester is built using off-the-shelf components and it can be easily modified for wide range of applications.


2019 ◽  
Vol 30 (7) ◽  
pp. 1094-1104 ◽  
Author(s):  
Peihong Wang ◽  
Xing Liu ◽  
Haibo Zhao ◽  
Wen Zhang ◽  
Xiaozhou Zhang ◽  
...  

Piezoelectric vibration energy harvesters have attracted much attention in the last decades due to their great potential application in powering various ultra-low-power sensors/actuators in the ambient environment. Many works have been presented to improve the energy conversion efficiency and broaden the operating bandwidth. One purpose of these studies is to harvest vibration energy with a specific excitation direction. However, a vibration source in a practical environment may from different directions. In this article, a piezoelectric vibration energy harvester with the radially distributed piezoelectric array is proposed to scavenge two-dimensional vibration energy. Meanwhile, we introduce a new concept, named angle bandwidth, to describe the ability of harvesting two-dimensional vibration energy. The theoretical analysis and the simulation results indicate that this harvester can scavenge vibration energy with arbitrary in-plane directions using the arc-shaped radially distributed piezoelectric array on a flexible cylinder. The experimental results show that this new design has large angle bandwidth, and the angle bandwidth increases from 87.5° to 106.3° when increasing the number of polyvinylidene fluoride elements from one to four. Also, the angle bandwidth of piezoelectric array in series is always larger than that in parallel. Overall, the present two-dimensional piezoelectric vibration energy harvester has the potential for a higher multi-directional vibration energy harvesting efficiency than a traditional cantilever-shaped piezoelectric vibration energy harvester. It also can be used as a self-powered vibration direction sensor.


Author(s):  
Enrico Bischur ◽  
Sebastian Pobering ◽  
Markus Menacher ◽  
Norbert Schwesinger

This paper describes an energy harvester working with the repeated deflection of a piezoelectric cantilever. The harvester works in flowing media like wind or water. The bending of the cantilever is driven by vortices traveling across it. The presented device is an easy solution for vibration energy harvesting without the need of external mechanical vibration. The working principle was determined with macroscopic models in wind and water channels. The harvester does not need in general a mechanical adaption to the external vibration frequency, because it oscillates always with its resonance frequency at different flow velocities. Furthermore a self synchronization of cantilevers arranged beside each other could be observed in water. A second system was able to supply a load of approximatly 2 mW in a wind channel at a flow velocity of 8 m/s.


Author(s):  
S. D. Moss ◽  
L. A. Vandewater ◽  
S. C. Galea

This work reports on the modelling and experimental validation of a bi-axial vibration energy harvesting approach that uses a permanent-magnet/ball-bearing arrangement and a wire-coil transducer. The harvester’s behaviour is modelled using a forced Duffing oscillator, and the primary first order steady state resonant solutions are found using the homotopy analysis method (or HAM). Solutions found are shown to compare well with measured bearing displacements and harvested output power, and are used to predict the wideband frequency response of this type of vibration energy harvester. A prototype harvesting arrangement produced a maximum output power of 12.9 mW from a 12 Hz, 500 milli-g (or 4.9 m/s2) rms excitation.


2016 ◽  
Vol 28 (5) ◽  
pp. 578-594 ◽  
Author(s):  
Sri Vikram Palagummi ◽  
Fuh-Gwo Yuan

This article identifies and studies key parameters that characterize a horizontal diamagnetic levitation mechanism–based low frequency vibration energy harvester with the aim of enhancing performance metrics such as efficiency and volume figure of merit. The horizontal diamagnetic levitation mechanism comprises three permanent magnets and two diamagnetic plates. Two of the magnets, lifting magnets, are placed co-axially at a distance such that each attracts a centrally located magnet, floating magnet, to balance its weight. This floating magnet is flanked closely by two diamagnetic plates which stabilize the levitation in the axial direction. The influence of the geometry of the floating magnet, the lifting magnet, and the diamagnetic plate is parametrically studied to quantify their effects on the size, stability of the levitation mechanism, and the resonant frequency of the floating magnet. For vibration energy harvesting using the horizontal diamagnetic levitation mechanism, a coil geometry and eddy current damping are critically discussed. Based on the analysis, an efficient experimental system is setup which showed a softening frequency response with an average system efficiency of 25.8% and a volume figure of merit of 0.23% when excited at a root mean square acceleration of 0.0546 m/s2 and at a frequency of 1.9 Hz.


2018 ◽  
Vol 26 (9) ◽  
pp. 2181-2189
Author(s):  
刘 星 LIU Xing ◽  
王佩红 WANG Pei-hong ◽  
张小舟 ZHANG Xiao-zhou ◽  
赵海波 ZHAO Hai-bo

2016 ◽  
Vol 109 (3) ◽  
pp. 033901 ◽  
Author(s):  
Nathan Sharpes ◽  
Abdessattar Abdelkefi ◽  
Hichem Abdelmoula ◽  
Prashant Kumar ◽  
Jan Adler ◽  
...  

2020 ◽  
Vol 142 (10) ◽  
Author(s):  
Shan Gao ◽  
Hongrui Ao ◽  
Hongyuan Jiang

Abstract Piezoelectric vibration energy harvesting technology has attracted significant attention for its applications in integrated circuits, microelectronic devices, and wireless sensors due to high power density, easy integration, simple configuration, and other outstanding features. Among piezoelectric vibration energy harvesting structures, the cantilevered beam is one of the simplest and most commonly used structures. In this work, a vertically staggered rectangle-through-holes (VS-RTH) cantilevered model is proposed, which focuses on the multi-directional vibration collection. To verify the output performance of the device, this paper employs basic materials and fabrication methods with mathematical modeling. The simulations are conducted through finite element methods to discuss the properties of VS-RTH energy harvester on resonant frequency and output characteristics. Besides, an energy storage circuit is adopted as a collection system. It can achieve a maximum voltage of 4.5 V which is responded to the harmonic vibrating input of 1 N force and 1 m/s2 in a single vibrating direction. Moreover, the power density is 2.596 W/cm3 with a 100 kΩ resistor. It is almost four times better than the output of unidirectional cantilever beam with similar resonant frequency and volume. According to the more functionality in the applications, VS-RTH energy harvester can be used in general vibration acquisition of machines and vehicles. Except for electricity storage, the harvester can potentially employ as a sensor to monitor the diversified physical signals for smooth operation and emergence reports. Looking forward, the VS-RTH harvester renders an effective approach toward decomposing the vibration directions in the environment for further complicating vibration applications.


Sign in / Sign up

Export Citation Format

Share Document