Synthesis of GaN Nanoparticles by DC Plasma Enhanced Chemical Vapor Deposition

2013 ◽  
Vol 829 ◽  
pp. 897-901 ◽  
Author(s):  
Mahdi Gholampour ◽  
Amir Abdollah-Zadeh ◽  
Reza Poursalehi ◽  
Leila Shekari

The unique optical properties of nanostructured GaN basically, turn it as a very important part of many electronic and optoelectronic devices such as high power transistors, UV detectors, solar cells, lasers and blue LED. The aim of the current study is GaN nanoparticle deposition at low temperature in preferred direction. In this work, GaN nanoparticles were prepared using direct current plasma enhanced chemical vapor deposition (DC-PECVD) method on Si (100) wafer as a substrate at 700°C. Gallium metal and nitrogen plasma were used as precursors. GaN nanoparticles were grown based on the direct reaction between gallium atoms and excited nitrogen species in the plasma. Structural and morphological characterizations of GaN nanoparticles were carried out using X-ray diffraction (XRD), energy dispersive X-ray spectroscopy (EDS) and field emissions electron microscopy (FE-SEM). Preferred (100) direction of GaN nanostructures which obtained by careful control of processing parameters, were revealed by XRD. FE-SEM images show the average diameter of nanoparticles is 37 nm. The EDS results show the Ga to N ratio in the sample was 8.8 to 1.2 by weight which is very close to the Ga to N ratio of prefect GaN crystal. The deviance is related to the nitrogen vacancy of the sample. These results demonstrate a simple inexpensive method for GaN nanoparticle deposition at low temperature which is critical for many of applications.

2000 ◽  
Vol 611 ◽  
Author(s):  
Akira Izumi ◽  
Hidekazu Sato ◽  
Hideki Matsumura

ABSTRACTThis paper reports a procedure for low-temperature nitridation of silicon dioxide (SiO2) surfaces using species produced by catalytic decomposition of NH3 on heated tungsten in catalytic chemical vapor deposition (Cat-CVD) system. The surface of SiO2/Si(100) was nitrided at temperatures as low as 200°C. X-ray photoelectron spectroscopy measurements revealed that incorporated N atoms are bound to Si atoms and O atoms and located top-surface of SiO2.


1997 ◽  
Vol 482 ◽  
Author(s):  
Dong-Jun Kim ◽  
Kyoung-Kook Kim ◽  
Jong-Sik Paek ◽  
Min-Su Yi ◽  
Do-Young Noh ◽  
...  

AbstractGaN epitaxial thin films were grown on a nitridated sapphire at low temperature (550°C) using remote plasma enhanced ultrahigh vacuum chemical vapor deposition system and these films were investigated by Rutherford backscattering spectroscopy (RBS), X-ray diffraction(XRD) θ-rocking technique and the Ultraviolet-Visible-Nearinfrared (UV-VIS-NIR) absorption spectrum. The FWHM of the X-ray θ-rocking curve was about 0.4 degree using the (0002) reflection from the GaN layer with 5000Å thickness grown on the nitridated sapphire. An analysis of XRD and the UV-VIS-NIR absorption spectrum showed that the crystalline and optical qualities of GaN are dependent on the nitridation time of the sapphire even at low temperature when a plasma source is used for nitridation. This means that the density of protrusion, which is formed by a relaxation of the elastic energy caused by the lattice difference between the sapphire and AlxO1-xN, with the sapphire nitridation time plays a key role in the crystalline and optical properties of grown GaN films. The RBS channeling data and the FWHM value of the θ-rocking curve for GaNr(0002) also indicated that the truncated hexagonals are tilted towards each other. These results showed that the GaN epitaxial film can be successfully grown on nitridated sapphire by RPE-UHVCVD even at low temperature.


Nanomaterials ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 3363
Author(s):  
Chi Zhang ◽  
Majiaqi Wu ◽  
Pengchang Wang ◽  
Maoliang Jian ◽  
Jianhua Zhang ◽  
...  

In this paper, the environmental stability of silicon nitride (SiNx) films deposited at 80 °C by plasma-enhanced chemical vapor deposition was studied systematically. X-ray photoelectron spectroscopy and Fourier transform infrared reflection were used to analyze the element content and atomic bond structure of the amorphous SiNx films. Variation of mechanical and optical properties were also evaluated. It is found that SiNx deposited at low temperature is easily oxidized, especially at elevated temperature and moisture. The hardness and elastic modulus did not change significantly with the increase of oxidation. The changes of the surface morphology, transmittance, and fracture extensibility are negligible. Finally, it is determined that SiNx films deposited at low-temperature with proper processing parameters are suitable for thin-film encapsulation of flexible devices.


1990 ◽  
Vol 192 ◽  
Author(s):  
Aain E. Kaloyeros ◽  
James W. Corbett ◽  
Paul J. Tobcano ◽  
Richard B. Rizk

ABSTRACTPreliminary results are presented for a new approach proposed by the present investigators to solve the problem of light-induced degradation in amorphous silicon semiconductors. The approach uses low-temperature metal-organic chemical vapor deposition (LTMOCVD) of tailored organometallic precursors. The precursors employed are non-toxic, non-hazardous and easy to handle. In the present paper, a-Si:H films were grown, using argon with various hydrogen concentrations as carrier gas, in a cold-wall CVD reactor at a reactor pressure of 1-10 torr and substrate temperature in the range 300–450°C. Characterization studies were performed using x-ray diffraction (XRD), x-ray photoelectron spectroscopy (XPS), and extended electron-energy-loss fine structure spectroscopy (EXELFS). The results of these studies showed that the films were uniform, continuous, adherent and highly pure--contaminant levels were below the detection limits of XPS. In addition, EXELFS results showed that short-range order (SRO), consisting of the same tetrahedral coordinated units found in crystalline silicon, does exist in all the amorphous samples, regardless of hydrogen concentration. However, the degree of stuctural disorder in the silicon local tetrahedral units decreased as hydrogen was added.


2003 ◽  
Vol 18 (8) ◽  
pp. 1868-1876 ◽  
Author(s):  
Spyridon Skordas ◽  
Filippos Papadatos ◽  
Guillermo Nuesca ◽  
John J. Sullivan ◽  
Eric T. Eisenbraun ◽  
...  

A low-temperature metalorganic chemical vapor deposition process was developed and optimized, using a design of experiments approach, for the growth of ultrathin aluminum oxide (Al2O3) as a potential gate dielectric in emerging semiconductor device applications. The process used the aluminum β-diketonate metalorganic precursor [aluminum(III) 2,4-pentanedionate] and water as, respectively, the metal and oxygen source reactants to grow Al2O3 films over a temperature range from 250 to 450 °C. The resulting films were analyzed by x-ray photoelectron spectroscopy, x-ray diffraction measurements, Rutherford backscattering spectrometry, nuclear-reaction analysis for hydrogen profiling, scanning electron microscopy, transmission electron microscopy, and atomic force microscopy. The as-deposited Al2O3 phase was amorphous and dense and exhibited carbon and hydrogen incorporation of, respectively, 1 and 10 at.%. Postannealing at 600 °C led to a reduction in hydrogen concentration to 1 at.%, while maintaining an amorphous Al2O3 matrix.


1998 ◽  
Vol 512 ◽  
Author(s):  
J. Chaudhur ◽  
K. Ignatiev ◽  
J. H. Edgar ◽  
Z. Y. Xie ◽  
Y. Gao

Highly perfect 3C-SiC thin films, on 6H-SiC deposited by the chemical vapor deposition at low temperature with various Cl/Si, H/Si and C/Si ratios were characterized by x-ray high resolution triple crystal diffractometry and double crystal topographic methods. The films were epitaxial with a low defect density present (mostly in the range of 107/cm2). X-ray topography revealed stacking faults, low angle grain boundaries, dislocations and inversion double positioning boundaries present in the film and substrate.


Sign in / Sign up

Export Citation Format

Share Document