Properties of Thermoplastic Natural Rubber (TPNR): Influence of Polypropylene Grades on TPNR Properties

2013 ◽  
Vol 844 ◽  
pp. 127-130 ◽  
Author(s):  
Chanida Manleh ◽  
Charoen Nakason ◽  
Natinee Lopattananon ◽  
Azizon Kaesaman

Thermoplastic vulcanizate (TPV) based on natural rubber (NR) and polypropylene (PP) blends were successfully prepared through a dynamic vulcanization process using Brabender Plastograph EC Plus with a rotor speed of 60 rpm at 180°C. Sulfur vulcanization system was used to cure rubber phase in the TPVs. Three grades of PP (i.e., PP700J, HP553R and HP544T) were used to blend with NR at a fixed blend ratio of NR/PP = 60/40. The mechanical properties, crosslink density, complex viscosity and morphological properties of the blends were examined. The results revealed that the dynamically cured NR/PP700J samples showed the best mechanical properties because of higher crosslink density and smaller rubber particle size when compared with those of the blends combined with HP553R and HP544T. Furthermore, the complex viscosity of the TPVs was highest for the blends with PP700J.

2013 ◽  
Vol 844 ◽  
pp. 89-92
Author(s):  
Boripat Sripornsawat ◽  
Azizon Kaesaman ◽  
Charoen Nakason

Maleated natural rubber (MNR) was synthesized and formulated to prepare thermoplastic natural rubber (TPNR) by blending with co-polyamide (COPA). It was found that 100% modulus, tensile strength, elongation at break, hardness and degree of swelling increased with increasing proportion of COPA. However, degree of swelling and tension set value decreased which reflects enhancing of rubber elasticity. Dynamic properties were also determined by a rotor less oscillating shear rheometer (Rheo Tech MDpt). It was found that increasing proportion of MNR caused increasing of storage modulus and complex viscosity but decreasing tan δ value. Morphological properties were also determined by SEM technique. It was found that the MNR/COPA simple blends with the proportion of rubber 40, 50 and 60 wt% exhibited the co-continuous phase structures.


2012 ◽  
Vol 626 ◽  
pp. 54-57 ◽  
Author(s):  
Chanida Manleh ◽  
Charoen Nakason ◽  
Natinee Lopattananon ◽  
Azizon Kaesaman

Thermoplastic vulcanizates based on natural rubber and polypropylene blend (NR/PP) was prepared via dynamic vulcanization by melt mixing process at 180°C and a rotor speed of 60 rpm. Three types of vulcanizing agent (i.e., Tetramethyl thiuram disulfide (TMTD), 4,4 Dithiodimorpholine (DTDM) and Dipentamethylene thiuram tetrasulfide (Tetrone A)) were used to cure the rubber phase of NR/PP blends. Influence loading levels of sulfur donor at 1, 2 and 3 phr on dynamic properties and crosslink density were studied. The result showed that the dynamically cured NR/PP blends with Tetrone A gave higher mechanical properties, storage modulus, complex viscosity, and crosslink density with the lower value of tanδ than those of the blends with TMTD and DTDM. Furthermore, the storage modulus, complex viscosity and crosslink density of TPVs increased with increasing loading levels for all types of sulfur donor. It was also found that thermal stability of dynamically cured NR/PP blends is higher than that of the pure NR.


2018 ◽  
Vol 92 (2) ◽  
pp. 298-309 ◽  
Author(s):  
Fang Wang ◽  
Aiming Zhang ◽  
Tao Zhou

ABSTRACT The morphological, rheological, and mechanical properties of BIIR/polypropylene (PP) blends with various amounts of 4,4′-bismaleimidodiphenylmethane (BMI) curing agent were studied. As the level of BMI curing agent increased, the rubber single particle size decreased, but the interaction among the particles strengthened to form aggregates. The rheological properties were determined with a high-pressure capillary rheometer and a rotational rheometer. It was found that the rheological behavior was affected by both the BMI content and the morphology of the blends. The increased BMI content led to the smaller vulcanized BIIR rubber particles dispersing in the PP continuous phase because of the improvement in cross-linking speed and degree as well as the viscosity of BIIR. The dynamic vulcanization strongly improved the elasticity of the blends. The storage modulus, loss modulus, and complex viscosity of cured BIIR/PP blends were all obviously higher than those of the uncured blend, whereas the values of tan δ showed the opposite trend. The as-prepared BIIR/PP thermoplastic vulcanizate exhibited suitable hardness and good mechanical properties.


2011 ◽  
Vol 410 ◽  
pp. 90-93 ◽  
Author(s):  
Ladawan Srisuwan ◽  
Kasama Jarukumjorn ◽  
Nitinat Suppakarn

In this study, rice husk fiber (RHF) was used as a reinforcing filler for natural rubber (NR). NR composites were prepared at various RHF contents, i.e., 10, 20, 30, 40 and 50 phr. Sulfur conventional vulcanization was used. Effect of RHF content on cure characteristics, mechanical properties and morphological properties of NR composites were investigated. The results showed that scorch and cure times of RHF/NR composites were not affected by increasing RHF content. Crosslink density, tensile strength, elongation at break and tear strength of NR composites slightly decreased with increasing RHF content whereas M100 and M300 of the composites slightly increased with increasing RHF content.


2012 ◽  
Vol 626 ◽  
pp. 50-53 ◽  
Author(s):  
Krisna Sasdipan ◽  
Azizon Kaesaman ◽  
Charoen Nakason

TPNRs based on blending of co-polyester (i.e., PBT/PC) and epoxidized natural rubber (ENR) with various epoxide content (i.e., 10, 20, 30, 40 and 50 mol% epoxide) were prepared by dynamic vulcanization. It was found that the co-polyester/ENR blends gave better properties (i.e., mechanical, dynamic mechanical, morphological and oil resistant properties) than that of co-polyester/unmodified NR blend. It was also found that co-polyester/ENR with 50 mol% epoxide exhibited the highest tensile strength, elongation at break, modulus at 100% elongation, hardness, storage modulus, complex viscosity and oil resistant properties but showed the lowest tension set value. This indicates the highest elasticity. Moreover, it was found that size of vulcanized rubber domains dispersed in thermoplastic matrix decreased with increasing the epoxide content in ENR molecules.


2013 ◽  
Vol 844 ◽  
pp. 113-116 ◽  
Author(s):  
Ekwipoo Kalkornsurapranee ◽  
Charoen Nakason ◽  
Skulrat Pichaiyut ◽  
Claudia Kummerlöwe ◽  
Norbert Vennemann

Thermoplastic natural rubber based on blending of ENR-50/TPU and un-modified NR/TPU was prepared via dynamic vulcanization technique. Influences types of natural rubber (i.e., un-modified NR and ENR-50) on mechanical and morphological properties of the blends were investigated. It was found that the blends with ENR-50 exhibited superior properties than that of the blend with unmodified NR. This is attributed to the interactions between the functional groups of ENR molecules and polar functional groups in TPU molecules which caused higher interfacial adhesion and interaction between both phases. The chemical interactions were confirmed by ATR-FTIR. Furthermore, it was found that the ENR-50/TPU blend showed smaller and finer grain morphology compared with the un-modified NR/TPU.


2011 ◽  
Vol 471-472 ◽  
pp. 115-120
Author(s):  
Engku Zaharah Engku Zawawi ◽  
Ahmad Haji Sahrim ◽  
Rozaidi Rashid

Nanocomposites prepared from blend of high density polyethylene (HDPE), natural rubber (NR) and organoclay were melt compounded using an internal mixer. The phase morphology and mechanical properties of this thermoplastic natural rubber nanocomposites samples were examined. The transmission electron microscope (TEM) and wide angle X-ray scattering (WAXS) was used to determine the exfoliation of organoclay in this blend. The tensile and Izod impact test were used to evaluate the mechanical properties of HDPE/organoclay nanocomposites with and without the presence of NR. The Izod impact results shows an improvement more than 300% with addition of 10% NR content in the matrix. The X-ray diffraction results indicated intercalation of blend into the silicate interlayer of nano-filler I.44P and partially exfoliation of silicate layer into the blend. The SEM morphology revealed that there was some part of uneven dispersion of organoclay in the blend.


2018 ◽  
Vol 2018 ◽  
pp. 1-11 ◽  
Author(s):  
Chatree Homkhiew ◽  
Surasit Rawangwong ◽  
Worapong Boonchouytan ◽  
Wiriya Thongruang ◽  
Thanate Ratanawilai

The aim of this work is to investigate the effects of rubberwood sawdust (RWS) size and content as well as the ratio of natural rubber (NR)/high-density polyethylene (HDPE) blend on properties of RWS reinforced thermoplastic natural rubber (TPNR) composites. The addition of RWS about 30–50 wt% improved the modulus of the rupture and tensile strength of TPNR composites blending with NR/HDPE ratios of 60/40 and 50/50. TPNR composites reinforced with RWS 80 mesh yielded better tensile strength and modulus of rupture than the composites with RWS 40 mesh. The TPNR/RWS composites with larger HDPE content gave higher tensile, flexural, and Shore hardness properties and thermal stability as well as lower water absorption. The TPNR/RWS composites with larger plastic content were therefore suggested for applications requiring high performance of thermal, physical, and mechanical properties.


2013 ◽  
Vol 844 ◽  
pp. 53-56
Author(s):  
Saravalee Saengthaveep ◽  
Sadhan C. Jana ◽  
Rathanawan Magaraphan

To produce a tough material for application demanding high impact resistance and low moisture absorption, melt blending of Nylon12 (Polyamide 12, PA12) and natural rubber (NR) was carried out in a brabender plasticorder at 210 °C with rotor speed of 70 rpm in the presence of polystyrene/maleated natural rubber (PS/MNR) blend as a compatibilizer. The effect of compatibilizer content (1, 3, 5, 7 and 10 phr) on phase morphology, thermal, and mechanical properties of [Nylon12/NR]/[PS/MNR] blends was investigated by using SEM, DSC, and Izod impact tester, respectively. The result revealed that PS/MNR blend improved the compatibility of Nylon12/NR blends efficiently due to the presence of amide linkage at the interfaces from the reaction between the reactive groups of MNR and the NH2 end groups of Nylon12 during mixing. A fine phase morphology (good dispersion and small dispersed phase size of NR domains in Nylon12 matrix) of [Nylon12/NR]/[PS/MNR] blends was observed at the optimum compatibilizer content of 7 phr, relating to the improvement of mechanical property. The impact energy of [Nylon12/NR]/[PS/MNR] blends was 503 J/m higher than that of neat Nylon12 (115 J/m) and Nylon12/NR binary blend (241 J/m) due to the toughening effect of rubber and proper morphology. The melting temperature of all blends did not change obviously from thermal analysis. However, the presence of rubber particle obstructed the crystallization of Nylon12 phase, leading to the decreasing of %crystallinity from 93% to around 70%.


Sign in / Sign up

Export Citation Format

Share Document