Numerical Simulation of Aerodynamic Performance of Film Cooling on a Flat Plate with Surface Roughness

2013 ◽  
Vol 853 ◽  
pp. 576-581
Author(s):  
Jian Fei Wang ◽  
Yong Bin Ji ◽  
Shu Sheng Zang

This study is aimed at researching surface roughness effect on the performance of blades in terms of aerodynamics. Numerical simulation on a rough flat plate with a row of 35°round film holes under different roughness heights, Reynolds numbers and blowing ratios is conducted to see how they affect film cooling on a flat plate. In terms of aerodynamics, the increase of surface roughness height, Reynolds number and blow ratio will result in the increase of skin friction coefficient. Besides, roughness has combined effects with Reynolds number and blowing ratio So the effect of surface roughness on blades performance is too big to ignore.

Author(s):  
Zhong Ren ◽  
Sneha Reddy Vanga ◽  
Nathan Rogers ◽  
Phil Ligrani ◽  
Keith Hollingsworth ◽  
...  

The present study provides new heat transfer data for both the surfaces of the full coverage effusion cooling plate within a double wall cooling test facility. To produce the cooling stream, a cold-side cross-flow supply for the effusion hole array is employed. Also utilized is a unique mainstream mesh heater, which provides transient thermal boundary conditions, after mainstream flow conditions are established. For the effusion cooled surface, presented are spatially-resolved distributions of surface adiabatic film cooling effectiveness, and surface heat transfer coefficients (measured using infrared thermography). For the coolant side, presented are spatially-resolved distributions of surface Nusselt numbers (measured using liquid crystal thermography). Of interest are the effects of streamwise development, blowing ratio, and Reynolds number. Streamwise hole spacing and spanwise hole spacing (normalized by effusion hole diameter) on the effusion plate are 15 and 4, respectively. Effusion hole diameter is 6.35 mm, effusion hole angle is 25 degrees, and effusion plate thickness is 3 hole diameters. Considered are overall effusion blowing ratios from 2.9 to 7.5, with subsonic, incompressible flow, and constant freestream velocity with streamwise development, for two different mainstream Reynolds numbers. For the hot side (mainstream) of the effusion film cooling test plate, results for two mainflow Reynolds numbers of about 145000 and 96000 show that the adiabatic cooling effectiveness is generally higher for the lower Reynolds number for a particular streamwise location and blowing ratio. The heat transfer coefficient is generally higher for the low Reynolds number flow. This is due to altered supply passage flow behavior, which causes a reduction in coolant lift-off of the film from the surface as coolant momentum, relative to mainstream momentum, decreases. For the coolant side of the effusion test plate, Nusselt numbers generally increase with blowing ratio, when compared at a particular streamwise location and mainflow Reynolds number.


2000 ◽  
Author(s):  
Stephen E. Turner ◽  
Hongwei Sun ◽  
Mohammad Faghri ◽  
Otto J. Gregory

Abstract This paper presents an experimental investigation on nitrogen and helium flow through microchannels etched in silicon with hydraulic diameters between 10 and 40 microns, and Reynolds numbers ranging from 0.3 to 600. The objectives of this research are (1) to fabricate microchannels with uniform surface roughness and local pressure measurement; (2) to determine the friction factor within the locally fully developed region of the microchannel; and (3) to evaluate the effect of surface roughness on momentum transfer by comparison with smooth microchannels. The friction factor results are presented as the product of friction factor and Reynolds number plotted against Reynolds number. The following conclusions have been reached in the present investigation: (1) microchannels with uniform corrugated surfaces can be fabricated using standard photolithographic processes; and (2) surface features with low aspect ratios of height to width have little effect on the friction factor for laminar flow in microchannels.


Author(s):  
A. Newman ◽  
S. Xue ◽  
W. Ng ◽  
H. K. Moon ◽  
L. Zhang

An experimental study was performed to measure surface Nusselt number and film cooling effectiveness on a film cooled first stage nozzle guide vane using a transient thin film gauge (TFG) technique. The information presented attempts to further characterize the performance of shaped hole film cooling by taking measurements on a row of shaped holes downstream of leading edge showerhead injection on both the pressure and suction surfaces (hereafter PS and SS) of a 1st stage NGV. Tests were performed at engine representative Mach and Reynolds numbers and high inlet turbulence intensity and large length scale at the Virginia Tech Transonic Cascade facility. Three exit Mach/Reynolds number conditions were tested: 1.0/1,400,000; 0.85/1,150,000; and 0.60/850,000 where Reynolds number is based on exit conditions and vane chord. At Mach/Reynolds numbers of 1.0/1,450,000 and 0.85/1,150,000 three blowing ratio conditions were tested: BR = 1.0, 1.5, and 2.0. At a Mach/Reynolds number of 0.60/850,000, two blowing ratio conditions were tested: BR = 1.5 and 2.0. All tests were performed at inlet turbulence intensity of 12% and length scale normalized by the cascade pitch of 0.28. Film cooling effectiveness and heat transfer results compared well with previously published data, showing a marked effectiveness improvement (up to 2.5x) over the showerhead only NGV and agreement with published showerhead-shaped hole data. Net heat flux reduction was shown to increase substantially (average 2.6x) with the addition of shaped holes, with an increase (average 1.6x) in required coolant mass flow. Boundary layer transition location was shown to be within a consistent region on the suction side regardless of blowing ratio and exit Mach number.


Author(s):  
Hong Wu ◽  
Huichuan Cheng ◽  
Yulong Li ◽  
Shuiting Ding

Film cooling performance of a sister hole was investigated in a flat plate model by applying Thermochromic Liquid Crystal (TLC) technique under the stationary and rotating conditions. The flat plate model is installed in the test section. The sister hole include one main hole and two additional side holes with the smaller diameter in the spanwise direction. The diameter of the main hole is 4 mm and the injection angle is 30°. The density ratio of coolant to mainstream is 1.05. The Reynolds number (ReD) based on the velocity of mainstream and the diameter of the main hole are 2300, 3400 and 4500. Four rotational speeds of 200, 400, 600 and 800 rpm are conducted on both pressure side (trailing wall) and suction side (leading wall) with the blowing ratio varying from 0.14 to 3.5. The effects of blowing ratio, Reynolds number (ReD) and rotation number are mainly analyzed according to film coverage and film cooling effectiveness. The results show that the film performance firstly increases then decreases with the rising of blowing ratio, the optimal blowing ratio is about M=0.5. The film cooling performance is improved with higher Reynolds number (ReD). Under the rotation condition, the film trajectory has an obvious centrifugal deflection which can be enhanced by higher rotation number on the pressure side, and the film deflection moves a little centripetally on the suction side. The film cooling effectiveness on the suction side increases with the rising of rotation number and it is higher than that on the pressure side.


2013 ◽  
Vol 135 (3) ◽  
Author(s):  
S. Xue ◽  
A. Newman ◽  
W. Ng ◽  
H. K. Moon ◽  
L. Zhang

An experimental study was performed to measure surface Nusselt number and film cooling effectiveness on a film cooled first stage nozzle guide vane (NGV) at high freestream turbulence, using a transient thin film gauge (TFG) technique. The information presented attempts to further characterize the performance of shaped hole film cooling by taking measurements on a row of shaped holes downstream of leading edge showerhead injection on both the pressure and suction surfaces (hereafter PS and SS) of a first stage NGV. Tests were performed at engine representative Mach and Reynolds numbers and high inlet turbulence intensity and large length scale at the Virginia Tech 2D Linear Transonic Cascade facility. Three exit Mach/Reynolds number conditions were tested: 1.0/1,400,000, 0.85/1,150,000, and 0.60/850,000 where Reynolds number is based on exit conditions and vane chord. At Mach/Reynolds numbers of 1.0/1,450,000 and 0.85/1,150,000, three blowing ratio conditions were tested: BR = 1.0, 1.5, and 2.0. At a Mach/Reynolds number of 0.60/850,000, two blowing ratio conditions were tested: BR = 1.5 and 2.0. All tests were performed at inlet turbulence intensity of 12% and length scale normalized by the cascade pitch of 0.28. Film cooling effectiveness and heat transfer results compared well with previously published data, showing a marked effectiveness improvement (up to 2.5×) over the showerhead-only NGV and also agreement with published showerhead-shaped hole data. Net heat flux reduction (NHFR) was shown to increase substantially (average 2.6 × ) with the addition of shaped holes with an increase (average 1.6×) in required coolant mass flow. Based on the heat flux data, the boundary layer transition location was shown to be within a consistent region on the suction side regardless of blowing ratio and exit Mach number.


2012 ◽  
Vol 614-615 ◽  
pp. 216-221 ◽  
Author(s):  
Ruo Ling Dong ◽  
Hong Hui Shi ◽  
Wei Chen ◽  
Xiao Dong Zhang

A numerical simulation was conducted to investigate the flow characteristics, film cooling effectiveness and aerodynamics loss over flat plate. Three types of shaped holes, separately, cylindrical hole, laterally diffused hole and converging-expanding hole were studied with 35°inclination angle and 0°compound angle. The inlet diameter of the hole in this paper is 12.7 mm, giving a L/D ratio of 3.5 at a mainstream velocity of 20m/s, turbulence intensity 2%, and temperature ratio to cooling jet 1.97, with blowing ratio M equaling to 0.5. Realizable k-ε turbulence model, standard wall function and SIMPLE method for pressure-velocity coupling were used .The coefficients η and ξ were calculated to analyze cooling effectiveness and aerodynamics loss. Both high film cooling effectiveness and low loss are found with laterally diffused hole. While optimizing the hole geometry in film cooling, cooling effectiveness and aerodynamics loss should been considered simultaneously.


2015 ◽  
Vol 3 (2) ◽  
pp. 15-27
Author(s):  
Ahmed A. Imram ◽  
Humam K. Jalghef ◽  
Falah F. Hatem

     The effect of introducing ramp with a cylindrical slot hole on the film cooling effectiveness has been investigated experimentally and numerically. The film cooling effectiveness measurements are obtained experimentally. A test study was performed at a single mainstream with Reynolds number 76600 at three different coolant to mainstream blowing ratios 1.5, 2, and 3. Numerical simulation is introduced to primarily estimate the best ramp configurations and to predict the behavior of the transport phenomena in the region linked closely to the interaction between the coolant air injection and the hot air mainstram flow. The results showed that using ramps with trench cylindrical holes would enhanced the overall film cooling effectiveness by 83.33% compared with baseline model at blowing ratio of 1.5, also  the best overall flim cooling effectevness was obtained at blowing ratio of 2 while it is reduced at blowing ratio of 3.


2020 ◽  
Vol 0 (0) ◽  
Author(s):  
Peng Yang ◽  
Guangchao Li ◽  
Jianyong Zhu

Abstract The film effectiveness was investigated on a grooved surface with the injection orientation angles of 30°, 90°, and 150° at the blowing ratios of 0.5, 0.8, 1.1, and 1.4. The injection orientation angle and the groove on the surface caused the effect of the various and irregular shaped hole injection due to the different orientation injection. The results showed that the new phenomenon of film effectiveness distributions was found on the grooved surface compared with the flat plate case. Film effectiveness distributions for the β = 30° were found to be the discontinuous strips. The surface averaged film effectiveness with the orientation angle of 30° was found to decrease with the increase of the blowing ratio. Additionally, the reverse trend was observed with the orientation angle of 150°. The film effectiveness with the orientation angle of 90° only slightly changed with the increase of the blowing ratio.


2020 ◽  
Vol 0 (0) ◽  
Author(s):  
Peng Yang ◽  
Guangchao Li ◽  
Jianyong Zhu

AbstractThe film effectiveness was investigated on a grooved surface with the injection orientation angles of 30°, 90°, and 150° at the blowing ratios of 0.5, 0.8, 1.1, and 1.4. The injection orientation angle and the groove on the surface caused the effect of the various and irregular shaped hole injection due to the different orientation injection. The results showed that the new phenomenon of film effectiveness distributions was found on the grooved surface compared with the flat plate case. Film effectiveness distributions for the β = 30° were found to be the discontinuous strips. The surface averaged film effectiveness with the orientation angle of 30° was found to decrease with the increase of the blowing ratio. Additionally, the reverse trend was observed with the orientation angle of 150°. The film effectiveness with the orientation angle of 90° only slightly changed with the increase of the blowing ratio.


Author(s):  
James E. Mayhew ◽  
James W. Baughn ◽  
Aaron R. Byerley

The film-cooling performance of a flat plate in the presence of low and high freestream turbulence is investigated using liquid crystal thermography. High-resolution distributions of the adiabatic effectiveness are determined over the film-cooled surface of the flat plate using the hue method and image processing. Three blowing rates are investigated for a model with three straight holes spaced three diameters apart, with density ratio near unity. High freestream turbulence is shown to increase the area-averaged effectiveness at high blowing rates, but decrease it at low blowing rates. At low blowing ratio, freestream turbulence clearly reduces the coverage area of the cooling air due to increased mixing with the main flow. However, at high blowing ratio, when much of the jet has lifted off in the low turbulence case, high freestream turbulence turns its increased mixing into an asset, entraining some of the coolant that penetrates into the main flow and mixing it with the air near the surface.


Sign in / Sign up

Export Citation Format

Share Document