Multiple Models Fuzzy PID Controller Design in Air-Condition Temperature Control System

2013 ◽  
Vol 860-863 ◽  
pp. 1616-1619
Author(s):  
Hang Jiang ◽  
Xin Wang ◽  
Yi Hui Zheng ◽  
Li Xue Li ◽  
Yan Liu

This paper deals with the study of air-condition temperature control, which is a complex system of time varying, nonlinear, imprecise model and uncertain work environment. In this paper, a multiple models fuzzy PID controller is designed. Considering the air-condition temperature adjustment system to combat aircraft and the frequently changing external environment the multiple fuzzy PID controllers are estimated according to the temperature changing area. Each time, based on temperature tested, only one fuzzy PID Controller is chosen to improve the control precision. At the end, simulation results show that multiple model fuzzy PID control is superior to the single fuzzy PID control, which effectively improve the transient response of the system, the steady state accuracy and robustness, having good prospects for engineering applications.

2015 ◽  
Vol 727-728 ◽  
pp. 633-636 ◽  
Author(s):  
Qiang Gu ◽  
Feng Long Zheng ◽  
Bin Bin Liu ◽  
Wen Yan Yang

Since the object model is time-varying and time-delay in the electric boiler temperature control system, Smith Fuzzy PID controller is applied in it. Simulation results in the paper show that the overshoot is reduced by 31.3% compared with the system under Smith PID control and the adjusting time reached a 30% reduction compared with those under Fuzzy PID control with T=380 and τ=110. In order to eliminate the oscillation problem in system when model parameters change, a new Smith Fuzzy PID controller with two degrees of freedom is applied, whose control performance is much better than that of Smith Fuzzy PID.


2013 ◽  
Vol 284-287 ◽  
pp. 2291-2295
Author(s):  
Man Chen Xiong ◽  
Ling Long Wang ◽  
Yi Heng Jiang

Parameter self-setting fuzzy PID control algorithm for control drying temperature is proposed to improve the problem about big fluctuations in temperature and high pellet broken rate of traditional control on Cold pressure ball drying system in this paper, and the controller create intelligence temperature control system through combine fuzzy control and PID control. We establish fuzzy controller, preparation of fuzzy look-up table in PLC and combined with PID control module to realize fuzzy PID control algorithm, through the computer simulation to analyze the fuzzy PID controller control effect.


2012 ◽  
Vol 466-467 ◽  
pp. 47-51 ◽  
Author(s):  
Jing Liu

The process of PVC polymerization is nonlinear and time-delayed. It is very difficult to establish an exact mathematical model. Based on the analysis of the conventional PID controller’s limitation, the fuzzy PID control system of PVC polymerization is introduced. A new kind of fuzzy PID controller is designed and the three parameters of PID can be self-tuned on-line. The simulation result proves that fuzzy PID controller is better than common PID controller.


2014 ◽  
Vol 945-949 ◽  
pp. 2568-2572
Author(s):  
Si Yuan Wang ◽  
Guang Sheng Ren ◽  
Pan Nie

The test rig for hydro-pneumatic converter used in straddle type monorail vehicles was researched, and its electro-pneumatic proportional control system was set up and simulated based on AMESim/Simulink. Compared fuzzy-PID (Proportion Integral Derivative) controller with PID controller through fuzzy logic tool box in Simulink, the results indicate that, this electro-pneumatic proportional control system can meet design requirements better, and fuzzy-PID controller has higher accuracy and stability than PID controller.


Author(s):  
Bambang Sumantri ◽  
Eko Henfri Binugroho ◽  
Ilham Mandala Putra ◽  
Rika Rokhana

The two-wheeled electric skateboard (TWS) is designed for a personal vehicle. A Fuzzy-PID control strategy is designed and implemented for controlling its motion. Basically, motions control of the TWS is performed by balancing the pitch position of the TWS. Performance of the designed controller is demonstrated experimentally. The Fuzzy algorithm updates the PID gains and therefore it can handle the changing of the TWS load. Contribution of Fuzzy-PID in reducing the electric energy consumption, which is an important issue in electrical system, is also evaluated. The Fuzzy-PID successes to reduce the electric energy consumption of the TWS compared to the conventional PID.


2012 ◽  
Vol 217-219 ◽  
pp. 2463-2466 ◽  
Author(s):  
Xue Gang Hou ◽  
Cheng Long Wang

Induction heating furnace temperature control is a complex nonlinear hysteretic inertial process, it's difficult to obtain an accurate mathematical model because the temperature and disturb from outside is complicated. The normal PID control algorithm is hard to satisfy the standards of control. The fuzzy PID controller provided in this article is a combination between fuzzy control and the traditional PID control. The Fuzzy control theory is used to setting the ratio, the integral and the differential coefficient of the PID control. In the run-up stage, rapidity is guaranteed, overstrike and the steady-state error is up to the mustard. An example indicates that fuzzy PID control is superior to the normal PID controller.


2013 ◽  
Vol 325-326 ◽  
pp. 1193-1196
Author(s):  
Guo Sheng Xu

In view of the fact that the performance of any conventional PID control can t meet the requirement an electric boiler temperature control system, this paper puts forward a kind of improved algorithm for tuning the PID parameters. an adaptive fuzzy controller with adjusting factor is proposed in this paper. Experimental results illustrate that the adaptive fuzzy PID controller achieved the system performance index. The method of adaptive fuzzy PID control is a ideal method.


2012 ◽  
Vol 531-532 ◽  
pp. 726-731
Author(s):  
Yue Hua Xiong ◽  
Chun Liang Zhang ◽  
Bai Xiang Fu

This paper focus on designing a fuzzy PID controller design about the vapor pressure of the EPE foaming machine parameters, and raise a self-tuning method of PID parameters, and use the fuzzy control toolbox of MATLAB to simulate its control system, which are compared with the simulation of conventional PID controller, the results show the design of fuzzy PID controller have high control precision, small overshoot, good dynamic performance characteristics.


Sign in / Sign up

Export Citation Format

Share Document