A Mathematical Model for Natural Fracture Evolution in Water-Flooding Oil Reservoir

2013 ◽  
Vol 868 ◽  
pp. 535-541
Author(s):  
Hong Liu ◽  
Lin Wang ◽  
Yu Wu Zhou ◽  
Xi Nan Yu

The fractured low permeability reservoirs develop complex fracture network. As the of waterflooding recovery heightens, excessive high injection pressures and excessive water injection rate will result in open, initiation, propagation and coalescence of micro-fracture, connecting injection with production form the high permeability zone, which results in a one-way onrush of waterflooding, water cut in oil well water rise quickly, causing a severe oil well flooding and channeling, thereby reducing the ultimate oil recovery efficiency. The effect of the waterflooding seepage within natural fracture on fracture initiation is studied and analyzed here, applying the theory of rock fracture mechanics to analyze the interaction of fracture system for naturally fractured reservoirs in waterflooding developing process, studying the mechanical mechanism of opening, initiation, propagation and coalescence of natural fracture under injection pressure, which is important theoretical significance for studying the distribution law of fracture and defining appreciate water injection mode and injection pressure in the process of injection development of the naturally fractured reservoir and for delaying the directivity water break-through and water flooding rate of oil well in the process of injection development.

Geofluids ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-9
Author(s):  
Xiang Li ◽  
Yuan Cheng ◽  
Wulong Tao ◽  
Shalake Sarulicaoketi ◽  
Xuhui Ji ◽  
...  

The production of a low permeability reservoir decreases rapidly by depletion development, and it needs to supplement formation energy to obtain stable production. Common energy supplement methods include water injection and gas injection. Nitrogen injection is an economic and effective development method for specific reservoir types. In order to study the feasibility and reasonable injection parameters of nitrogen injection development of fractured reservoir, this paper uses long cores to carry out displacement experiment. Firstly, the effects of water injection and nitrogen injection development of a fractured reservoir are compared through experiments to demonstrate the feasibility of nitrogen injection development of the fractured reservoir. Secondly, the effects of gas-water alternate displacement after water drive and gas-water alternate displacement after gas drive are compared through experiments to study the situation of water injection or gas injection development. Finally, the reasonable parameters of nitrogen gas-water alternate injection are optimized by orthogonal experimental design. Results show that nitrogen injection can effectively enhance oil production of the reservoir with natural fractures in early periods, but gas channeling easily occurs in continuous nitrogen flooding. After water flooding, gas-water alternate flooding can effectively reduce the injection pressure and improve the reservoir recovery, but the time of gas-water alternate injection cannot be too late. It is revealed that the factors influencing the nitrogen-water alternative effect are sorted from large to small as follows: cycle injected volume, nitrogen and water slug ratio, and injection rate. The optimal cycle injected volume is around 1 PV, the nitrogen and water slug ratio is between 1 and 2, and the injection rate is between 0.1 and 0.2 mL/min.


2019 ◽  
Vol 141 (11) ◽  
Author(s):  
Shun Liu ◽  
Liming Zhang ◽  
Kai Zhang ◽  
Jianren Zhou ◽  
Heng He ◽  
...  

Presently, predicting the production performance of fractured reservoirs is often challenging because of the following two factors: one factor such as complicatedly connected and random distribution nature of the fractures and the other factor includes the limitations of the understanding of reservoir geology, deficient fracture-related research, and defective simulators. To overcome the difficulties of simulating and predicting fractured reservoir under complex circumstances of cross flow, a simplified model, which assumes cross flow only exists in the oil phase segment, is constructed. In the model, the pressure distribution of a single fracture can be described by solving an analytical mathematical model. In addition, due to research and field experience which indicate that cross flow also exists in the mixed-phase segment after water injection, the simplified model is modified to consider cross flow in the whole phase. The model constructed here is applicable for fractured reservoirs especially for a low-permeability fracture reservoir, and it moderately predicts future production index. By using iterative methods, the solution to the model can be feasibly obtained and related production performance index formulas can be derived explicitly. A case study was performed to test the model, and the results prove that it is good.


2021 ◽  
Author(s):  
Pavel Dmitrievich Gladkov ◽  
Anastasiia Vladimirovna Zheltikova

Abstract As is known, fractured reservoirs compared to conventional reservoirs have such features as complex pore volume structure, high heterogeneity of the porosity and permeability properties etc. Apart from this, the productivity of a specific well is defined above all by the number of natural fractures penetrated by the wellbore and their properties. Development of fractured reservoirs is associated with a number of issues, one of which is related to uneven and accelerated water flooding due to water breakthrough through fractures to the wellbores, for this reason it becomes difficult to forecast the well performance. Under conditions of lack of information on the reservoir structure and aquifer activity, the 3D digital models of the field generated using the hydrodynamic simulators may feature insufficient predictive capability. However, forecasting of breakthroughs is important in terms of generating reliable HC and water production profiles and decision-making on reservoir management and field facilities for produced water treatment. Identification of possible sources of water flooding and planning of individual parameters of production well operation for the purpose of extending the water-free operation period play significant role in the development of these reservoirs. The purpose of this study is to describe the results of the hydrochemical monitoring to forecast the water flooding of the wells that penetrated a fractured reservoir on the example of a gas condensate field in Bolivia. The study contains data on the field development status and associated difficulties and uncertainties. The initial data were results of monthly analyses of the produced water and the water-gas ratio dynamics that were analyzed and compared to the data on the analogue fields. The data analysis demonstrated that first signs of water flooding for the wells of the field under study may be diagnosed through the monitoring of the produced water mineralization - the water-gas ratio (WGR) increase is preceded by the mineralization increase that may be observed approximately a month earlier. However, the data on the analogue fields shows that this period may be longer – from few months to two years. Thus, the hydrochemical method within integrated monitoring of development of a field with a fractured reservoir could be one of the efficient methods to timely adjust the well operation parameters and may extend the water-free period of its operation.


2021 ◽  
Vol 73 (09) ◽  
pp. 58-59
Author(s):  
Chris Carpenter

This article, written by JPT Technology Editor Chris Carpenter, contains highlights of paper OTC 30407, “Case Study of Nanopolysilicon Materials’ Depressurization and Injection-Increasing Technology in Offshore Bohai Bay Oil Field KL21-1,” by Qing Feng, Nan Xiao Li, and Jun Zi Huang, China Oilfield Services, et al., prepared for the 2020 Offshore Technology Conference Asia, originally scheduled to be held in Kuala Lumpur, 2–6 November. The paper has not been peer reviewed. Copyright 2020 Offshore Technology Conference. Reproduced by permission. Nanotechnology offers creative approaches to solve problems of oil and gas production that also provide potential for pressure-decreasing application in oil fields. However, at the time of writing, successful pressure-decreasing nanotechnology has rarely been reported. The complete paper reports nanopolysilicon as a new depressurization and injection-increasing agent. The stability of nanopolysilicon was studied in the presence of various ions, including sodium (Na+), calcium (Ca2+), and magnesium (Mg2+). The study found that the addition of nanomaterials can improve porosity and permeability of porous media. Introduction More than 600 water-injection wells exist in Bohai Bay, China. Offshore Field KL21-1, developed by water-flooding, is confronted with the following challenges: - Rapid increase and reduction of water-injection pressure - Weak water-injection capacity of reservoir - Decline of oil production - Poor reservoir properties - Serious hydration and expansion effects of clay minerals To overcome injection difficulties in offshore fields, conventional acidizing measures usually are taken. But, after multiple cycles of acidification, the amount of soluble substances in the rock gradually decreases and injection performance is shortened. Through injection-performance experiments, it can be determined that the biological nanopolysilicon colloid has positive effects on pressure reduction and injection increase. Fluid-seepage-resistance decreases, the injection rate increases by 40%, and injection pressure decreases by 10%. Features of Biological Nanopolysilicon Systems The biological nanopolysilicon-injection system was composed of a bioemulsifier (CDL32), a biological dispersant (DS2), and a nanopolysilicon hydrophobic system (NP12). The bacterial strain of CDL32 was used to obtain the culture colloid of biological emulsifier at 37°C for 5 days. DS2 was made from biological emulsifier CDL32 and some industrial raw materials described in Table 1 of the complete paper. Nanopolysilicon hydrophobic system NP12 was composed of silicon dioxide particles. The hydrophobic nanopolysilicons selected in this project featured particle sizes of less than 100 nm. In the original samples, a floc of nanopolysilicon was fluffy and uniform. But, when wet, nanopolysilicon will self-aggregate and its particle size increases greatly. At the same time, nanopolysilicon features significant agglomeration in water. Because of its high interface energy, nanopolysilicon is easily agglomerated, as shown in Fig. 1.


2015 ◽  
Vol 18 (02) ◽  
pp. 187-204 ◽  
Author(s):  
Fikri Kuchuk ◽  
Denis Biryukov

Summary Fractures are common features in many well-known reservoirs. Naturally fractured reservoirs include fractured igneous, metamorphic, and sedimentary rocks (matrix). Faults in many naturally fractured carbonate reservoirs often have high-permeability zones, and are connected to numerous fractures that have varying conductivities. Furthermore, in many naturally fractured reservoirs, faults and fractures can be discrete (rather than connected-network dual-porosity systems). In this paper, we investigate the pressure-transient behavior of continuously and discretely naturally fractured reservoirs with semianalytical solutions. These fractured reservoirs can contain periodically or arbitrarily distributed finite- and/or infinite-conductivity fractures with different lengths and orientations. Unlike the single-derivative shape of the Warren and Root (1963) model, fractured reservoirs exhibit diverse pressure behaviors as well as more than 10 flow regimes. There are seven important factors that dominate the pressure-transient test as well as flow-regime behaviors of fractured reservoirs: (1) fractures intersect the wellbore parallel to its axis, with a dipping angle of 90° (vertical fractures), including hydraulic fractures; (2) fractures intersect the wellbore with dipping angles from 0° to less than 90°; (3) fractures are in the vicinity of the wellbore; (4) fractures have extremely high or low fracture and fault conductivities; (5) fractures have various sizes and distributions; (6) fractures have high and low matrix block permeabilities; and (7) fractures are damaged (skin zone) as a result of drilling and completion operations and fluids. All flow regimes associated with these factors are shown for a number of continuously and discretely fractured reservoirs with different well and fracture configurations. For a few cases, these flow regimes were compared with those from the field data. We performed history matching of the pressure-transient data generated from our discretely and continuously fractured reservoir models with the Warren and Root (1963) dual-porosity-type models, and it is shown that they yield incorrect reservoir parameters.


2014 ◽  
Vol 1073-1076 ◽  
pp. 2310-2315 ◽  
Author(s):  
Ming Xian Wang ◽  
Wan Jing Luo ◽  
Jie Ding

Due to the common problems of waterflood in low-permeability reservoirs, the reasearch of finely layered water injection is carried out. This paper established the finely layered water injection standard in low-permeability reservoirs and analysed the sensitivity of engineering parameters as well as evaluated the effect of the finely layered water injection standard in Block A with the semi-quantitative to quantitative method. The results show that: according to the finely layered water injection standard, it can be divided into three types: layered water injection between the layers, layered water injection in inner layer, layered water injection between fracture segment and no-fracture segment. Under the guidance of the standard, it sloved the problem of uneven absorption profile in Block A in some degree and could improve the oil recovery by 3.5%. The sensitivity analysis shows that good performance of finely layered water injection in Block A requires the reservoir permeability ratio should be less than 10, the perforation thickness should not exceed 10 m, the amount of layered injection layers should be less than 3, the surface injection pressure should be below 14 MPa and the injection rate shuold be controlled at about 35 m3/d.


Sign in / Sign up

Export Citation Format

Share Document