scholarly journals Experimental Study on Enhanced Oil Recovery by Nitrogen-Water Alternative Injection in Reservoir with Natural Fractures

Geofluids ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-9
Author(s):  
Xiang Li ◽  
Yuan Cheng ◽  
Wulong Tao ◽  
Shalake Sarulicaoketi ◽  
Xuhui Ji ◽  
...  

The production of a low permeability reservoir decreases rapidly by depletion development, and it needs to supplement formation energy to obtain stable production. Common energy supplement methods include water injection and gas injection. Nitrogen injection is an economic and effective development method for specific reservoir types. In order to study the feasibility and reasonable injection parameters of nitrogen injection development of fractured reservoir, this paper uses long cores to carry out displacement experiment. Firstly, the effects of water injection and nitrogen injection development of a fractured reservoir are compared through experiments to demonstrate the feasibility of nitrogen injection development of the fractured reservoir. Secondly, the effects of gas-water alternate displacement after water drive and gas-water alternate displacement after gas drive are compared through experiments to study the situation of water injection or gas injection development. Finally, the reasonable parameters of nitrogen gas-water alternate injection are optimized by orthogonal experimental design. Results show that nitrogen injection can effectively enhance oil production of the reservoir with natural fractures in early periods, but gas channeling easily occurs in continuous nitrogen flooding. After water flooding, gas-water alternate flooding can effectively reduce the injection pressure and improve the reservoir recovery, but the time of gas-water alternate injection cannot be too late. It is revealed that the factors influencing the nitrogen-water alternative effect are sorted from large to small as follows: cycle injected volume, nitrogen and water slug ratio, and injection rate. The optimal cycle injected volume is around 1 PV, the nitrogen and water slug ratio is between 1 and 2, and the injection rate is between 0.1 and 0.2 mL/min.

2013 ◽  
Vol 868 ◽  
pp. 535-541
Author(s):  
Hong Liu ◽  
Lin Wang ◽  
Yu Wu Zhou ◽  
Xi Nan Yu

The fractured low permeability reservoirs develop complex fracture network. As the of waterflooding recovery heightens, excessive high injection pressures and excessive water injection rate will result in open, initiation, propagation and coalescence of micro-fracture, connecting injection with production form the high permeability zone, which results in a one-way onrush of waterflooding, water cut in oil well water rise quickly, causing a severe oil well flooding and channeling, thereby reducing the ultimate oil recovery efficiency. The effect of the waterflooding seepage within natural fracture on fracture initiation is studied and analyzed here, applying the theory of rock fracture mechanics to analyze the interaction of fracture system for naturally fractured reservoirs in waterflooding developing process, studying the mechanical mechanism of opening, initiation, propagation and coalescence of natural fracture under injection pressure, which is important theoretical significance for studying the distribution law of fracture and defining appreciate water injection mode and injection pressure in the process of injection development of the naturally fractured reservoir and for delaying the directivity water break-through and water flooding rate of oil well in the process of injection development.


2014 ◽  
Vol 1073-1076 ◽  
pp. 2310-2315 ◽  
Author(s):  
Ming Xian Wang ◽  
Wan Jing Luo ◽  
Jie Ding

Due to the common problems of waterflood in low-permeability reservoirs, the reasearch of finely layered water injection is carried out. This paper established the finely layered water injection standard in low-permeability reservoirs and analysed the sensitivity of engineering parameters as well as evaluated the effect of the finely layered water injection standard in Block A with the semi-quantitative to quantitative method. The results show that: according to the finely layered water injection standard, it can be divided into three types: layered water injection between the layers, layered water injection in inner layer, layered water injection between fracture segment and no-fracture segment. Under the guidance of the standard, it sloved the problem of uneven absorption profile in Block A in some degree and could improve the oil recovery by 3.5%. The sensitivity analysis shows that good performance of finely layered water injection in Block A requires the reservoir permeability ratio should be less than 10, the perforation thickness should not exceed 10 m, the amount of layered injection layers should be less than 3, the surface injection pressure should be below 14 MPa and the injection rate shuold be controlled at about 35 m3/d.


2011 ◽  
Vol 391-392 ◽  
pp. 1051-1054
Author(s):  
Shu Li Chen ◽  
Wen Xiang Wu ◽  
Jia Bin Tang

In laboratory, the minimum miscible pressure (MMP) of oil and CO2 was studied by using a slim tube model. The results showed that the greater the gas injection pressure, the higher the cumulative recovery. The gas breakthrough when the gas was injected with a volume of 0.7~0.8PV, the trend of cumulative recovery increase slowed down and the produced gas-oil ratio increased dramatically. Core flooding experiments were carried to compare the effects of CO2 and water flooding. As a result, the ultimate oil recovery of CO2 flooding increased with the increase of gas injection pressure. If the gas flooding was miscible, the ultimate recovery of CO2 flooding was generally higher than that of water flooding.


Energies ◽  
2019 ◽  
Vol 12 (20) ◽  
pp. 3961
Author(s):  
Haiyang Yu ◽  
Songchao Qi ◽  
Zhewei Chen ◽  
Shiqing Cheng ◽  
Qichao Xie ◽  
...  

The global greenhouse effect makes carbon dioxide (CO2) emission reduction an important task for the world, however, CO2 can be used as injected fluid to develop shale oil reservoirs. Conventional water injection and gas injection methods cannot achieve desired development results for shale oil reservoirs. Poor injection capacity exists in water injection development, while the time of gas breakthrough is early and gas channeling is serious for gas injection development. These problems will lead to insufficient formation energy supplement, rapid energy depletion, and low ultimate recovery. Gas injection huff and puff (huff-n-puff), as another improved method, is applied to develop shale oil reservoirs. However, the shortcomings of huff-n-puff are the low sweep efficiency and poor performance for the late development of oilfields. Therefore, this paper adopts firstly the method of Allied In-Situ Injection and Production (AIIP) combined with CO2 huff-n-puff to develop shale oil reservoirs. Based on the data of Shengli Oilfield, a dual-porosity and dual-permeability model in reservoir-scale is established. Compared with traditional CO2 huff-n-puff and depletion method, the cumulative oil production of AIIP combined with CO2 huff-n-puff increases by 13,077 and 17,450 m3 respectively, indicating that this method has a good application prospect. Sensitivity analyses are further conducted, including injection volume, injection rate, soaking time, fracture half-length, and fracture spacing. The results indicate that injection volume, not injection rate, is the important factor affecting the performance. With the increment of fracture half-length and the decrement of fracture spacing, the cumulative oil production of the single well increases, but the incremental rate slows down gradually. With the increment of soaking time, cumulative oil production increases first and then decreases. These parameters have a relatively suitable value, which makes the performance better. This new method can not only enhance shale oil recovery, but also can be used for CO2 emission control.


Author(s):  
Moyosore, Olanipekun ◽  
Akpabio, Julius U. ◽  
Isehunwa, Sunday O.

Fluid-flood and other improved oil recovery techniques are becoming prominent in global petroleum production because a large proportion of production is from mature oil fields. Although water flooding and gas injection are well established techniques in the industry, several of the screening criteria in literature are discipline which could sometimes be subjective. This work used experimental design techniques to develop proxy models for predicting oil recovery under water-flood and gas-flood conditions. The objective of the study is to develop a quantitative screening method that would allow for candidates to be evaluated and ranked for water flood or gas injection. The model was applied to some field cases and compared with published models and the well-known Welge Analysis method. The coefficient constants for the oil formation volume factor for water flooding and gas injection was 0.0139 and 0.0434 respectively. Similarly, the coefficient constants for water injection and gas injection for the generated proxy model was -2.34* 10-8 and -6.1 *10-5 respectively. The results show that the proxy models developed are quite robust and can be used for first pass screening of water and gas flood candidates. 


2018 ◽  
Vol 37 (3) ◽  
pp. 945-959 ◽  
Author(s):  
Amirhossein Ebadati ◽  
Erfan Akbari ◽  
Afshin Davarpanah

Alternative injection of gas as slugs with water slugs, or alternative water gas injection, is the conventional technique for improving the recovery factor due to its high potential for mobilizing the residual oil in place in the reservoirs and to control gas mobility. The water alternating gas methodology is a combination of two oil recovery procedures: gas injection and waterflooding. The principal parameters that must be evaluated in water alternating gas injection in laboratory scale are reservoir heterogeneity, rock type, and fluid properties. In the current investigation, a feasibility study has been performed to analyze the five various scenarios of enhanced oil recovery techniques and compare them experimentally. The laboratory experiments are done for one of the Iranian reservoirs which have been subjected to waterflooding for several years, and the amount of recovery factor for water flooding is about 42%. The results of this study illustrate that water alternating gas injection and hot water alternating gas injection exert a profound impact on the amount of recovery factor. Moreover, the primary purpose of this study is to assess the application of alternative hot water and hot carbon dioxide gas injections in the conventional and fractured reservoir model.


2020 ◽  
pp. 2004-2016
Author(s):  
Dahlia Abdulhadi Al-Obaidi ◽  
Mohammed Saleh Al-Jawad

The Gas Assisted Gravity Drainage (GAGD) process has become one of the most important processes to enhance oil recovery in both secondary and tertiary recovery stages and through immiscible and miscible modes.  Its advantages came from the ability to provide gravity-stable oil displacement for improving oil recovery, when compared with conventional gas injection methods such as Continuous Gas Injection (CGI) and Water – Alternative Gas (WAG). Vertical injectors for CO2   gas were placed at the top of the reservoir to form a gas cap which drives the oil towards the horizontal oil producing wells which are located above the oil-water-contact. The GAGD process was developed and tested in vertical wells to increase oil recovery in reservoirs with bottom water drive and strong water coning tendencies. Many physical and simulation models of GAGD performance were studied at ambient and reservoir conditions to investigate the effects of this method to enhance the recovery of oil and to examine the most effective parameters that control the GAGD process.      A prototype 2D simulation model based on the scaled physical model was built for CO2-assisted gravity drainage in different statement scenarios. The effects of gas injection rate, gas injection pressure and oil production rate on the performance of immiscible CO2-assisted gravity drainage-enhanced oil recovery were investigated. The results revealed that the ultimate oil recovery increases considerably with increasing oil production rates. Increasing gas injection rate improves the performance of the process while high pressure gas injection leads to less effective gravity mediated recovery.


2012 ◽  
Vol 524-527 ◽  
pp. 1209-1212 ◽  
Author(s):  
Hong Xing Xu ◽  
Chun Sheng Pu ◽  
Hong Bin Yang ◽  
Wen Hua Man ◽  
Tao Yang

Aiming at the heterogeneity characteristics of fractured reservoir, a new type of nitrogen foam flooding agents is proposed. The gas/liquid ratio of nitrogen foam flooding is selected as 3:1, and the injection rate is selected as 3mL/min by the evaluation of foam resistance factor using core flooding equipment. In addition, this foam system has a better performance in the situation of low oil saturation. The results of nitrogen foam flooding show that it can enhance oil recovery by 38% after water flooding using artificial cuboid fractured core, indicating this nitrogen foam formula is suitable for EOR in fractured reservoir.


SPE Journal ◽  
2009 ◽  
Vol 15 (01) ◽  
pp. 76-90 ◽  
Author(s):  
W.R.. R. Rossen ◽  
C.J.. J. van Duijn ◽  
Q.P.. P. Nguyen ◽  
C.. Shen ◽  
A.K.. K. Vikingstad

Summary We extend a model for gravity segregation in steady-state gas/water injection into homogeneous reservoirs for enhanced oil recovery (EOR). A new equation relates the distance gas and water flow together directly to injection pressure, independent of fluid mobilities or injection rate. We consider three additional cases: coinjection of gas and water over only a portion of the formation interval, injection of water above gas over the entire formation interval, and injection of water and gas in separate zones well separated from each other. If gas and water are injected at fixed total volumetric rates, the horizontal distance to the point of complete segregation is the same, whether gas and water are coinjected over all or any portion of the formation interval. At fixed injection pressure, the deepest penetration of mixed gas and water flow is expected when fluids are injected along the entire formation interval. At fixed total injection rate, injection of water above gas gives deeper penetration before complete segregation than does coinjection, but again exactly where the two fluids are injected does not affect the distance to the point of segregation. At fixed injection pressure, injection of water above gas is predicted to give deeper penetration before complete segregation. When injection pressure is limited, the best strategy for simultaneous injection of both phases from a vertical well would be to inject gas at the bottom of the reservoir and water over the rest of the reservoir height, with the ratio of the injection intervals adjusted to maximize overall injectivity. The 2D model applies equally to gas/water flow and to foam, and to injection of water above gas from separate intervals of a vertical well or from two parallel horizontal wells, as long as injection is uniform along each horizontal well. Sample computer simulations for foam injection agree well with the model predictions if numerical dispersion is controlled.


SPE Journal ◽  
2013 ◽  
Vol 18 (02) ◽  
pp. 345-354 ◽  
Author(s):  
Lorraine E. Sobers ◽  
Martin J. Blunt ◽  
Tara C. LaForce

Summary We developed an injection strategy to recover moderately heavy oil and store carbon dioxide (CO2) simultaneously. Our compositional simulations are founded on pressure/volume/temperature- (PVT-) matched properties of oil found in an unconsolidated deltaic sandstone deposit in the Gulf of Paria, offshore Trinidad. In this region, oil density ranges between 940 and 1010 kg/m3 (9 to 18°API). We use countercurrent injection of gas and water to improve reservoir sweep and trap CO2 simultaneously; water is injected in the upper portion of the reservoir, and gas is injected in the lower portion. The two water-injection rates investigated, 100 and 200 m3/d, correspond to the water-gravity numbers 6.3 to 3.1 for our reservoir properties. We applied this injection strategy using vertical producers with two injection configurations: single vertical injector and a pair of horizontal parallel laterals in a simplified representation of the unconsolidated Forest sand found offshore Trinidad. Twelve simulation runs were conducted, varying injection-gas composition for miscible- and immiscible-gas drives, water-injection rate, and injection-well orientation. Our results show that water-over-gas injection can realize oil recoveries ranging from 17 to 30%. In each instance, more than 50% of injected CO2 remained in the reservoir, with less than 15% of the retained CO2 in the mobile phase.


Sign in / Sign up

Export Citation Format

Share Document