Solid-Liquid Equilibria for Binary Mixture of Dichlorophenols

2014 ◽  
Vol 881-883 ◽  
pp. 712-716
Author(s):  
Yan Fei Wang ◽  
Qi Shan Huang ◽  
Li Bin Yang ◽  
Liang Zhu

Differential Scanning Calorimeter (DSC) was used to investigate the thermal properties of 2,4-dichlorophenol+2,6-dichlorophenol and 2,4-dichlorophenol+2,3-dichlorophenol binary systems. The experimental results showed that The phase diagram of 2,4-dichlorophenol+2,6-dichlorophenol system was a simple eutectic type with the eutectic point at 294.99 K and 0.6200 mole fraction of 2,4dichlorophenol; The phase diagram of 2,4dichlorophenol+2,3dichlorophenol system was a simple eutectic type with the eutectic point at 291.86 K and 0.5834 mole fraction of 2,4dichlorophenol. Furthermore, the activity coefficients of components in mixtures of 2,4dichlorophenol+2,6dichlorophenol and2,4dichlorophenol+ 2,3dichlorophenol binary systems have been correlated by the Wilson model, respectively.

2017 ◽  
Vol 17 (3) ◽  
pp. 485
Author(s):  
Yudi Wicaksono ◽  
Budipratiwi Wisudyaningsih ◽  
Frida Oktaningtias Widiarthi ◽  
Tri Agus Siswoyo

Binary mixtures of pharmaceuticals significantly affect the physical and chemical properties of each component. The aim of this work was to explore the thermal behavior and solid state transformation of binary mixture of atorvastatin calcium and succinic acid. The thermodynamics of binary mixtures of atorvastatin calcium - succinic acid were determined by differential scanning calorimeter. Meanwhile, thermomicroscopy and microstructure were determined by a polarized microscope equipped with a heating stage and camera. The results showed that melting points of atorvastatin calcium and succinic acid respectively were 159.35 and 188.51 °C. The solid-liquid phase diagram of atorvastatin calcium - succinic acid indicates the existence of two eutectic points at 136.57 °C and 120.96 °C respectively on the mole fraction of atorvastatin calcium 0.3 and 0.5. Tamman diagram accurately shows mole fraction of atorvastatin calcium at eutectic point 0.33 and 0.46 respectively for eutectic points 130.0 °C and 134.0 °C. Determination of Jackson’s roughness parameter showed a value of atorvastatin calcium, succinic acid and eutectic mixtures > 2 which indicates that the interfaces of remelting crystals were smooth. Microstructure of remelting crystal of atorvastatin calcium and succinic acid respectively was irregular form and crossed plates. The results of thermomicroscopy of binary mixtures of atorvastatin calcium-succinic acid were consistent with differential scanning calorimetry curves and solid-liquid phase diagram.


1987 ◽  
Vol 42 (12) ◽  
pp. 1421-1424 ◽  
Author(s):  
K. Igarashi ◽  
H. Ohtani ◽  
J. Mochinaga

The phase diagram of ternary system LaCl3-CaCl2-NaCl has been constructed from the phase diagrams of the three binary systems and of thirteen quasi-binary systems determined by DTA. For the binaries LaCl3-CaCl2 and CaCl2-NaCl eutectic points were observed at 651 °C , 35.1 mol% LaCl3 and at 508 °C , 49.9 mol% NaCl, respectively. For LaCl3-NaCl, a peritectic point besides the eutectic point at 545 °C , 36.1 mol% LaCl3 was found at 690 °C , 57.5 mol%, which is attributable to the formation of the peritectic compound 3 LaCl3 · NaCl. The phase diagram of the ternary system has a ternary eutetic point and a ternary peritectic point due to 3 LaCl3-NaCl, the form er at 462 °C and 12.1 - 3 9 .7 - 4 8 .2 mol% (LaCl3-CaCl2-NaCl) and the latter at 612 °C and 26.9 - 55.1 - 18.0 mol%.


2016 ◽  
Author(s):  
◽  
Siyanda Brian Chule

In this work, the thermodynamic properties for the binary mixtures containing the ionic liquid (IL): 1-ethyl-3-methylimidazolium ethyl sulphate ([EMIM] [EtSO4]) were calculated. The binary systems studied were {pyridine (Py) or ethyl acetoacetate (EAA) or thiophene (TS) + [EMIM] [EtSO4]}. The results were interpreted in terms of the intermolecular interactions between the (pyridine + IL), (ethyl acetoacetate + IL), and (thiophene + IL) molecules. The physical properties: density, speed of sound, and refractive index were measured for the binary mixtures over the complete mole fraction range using an Anton Paar DSA 5000 M vibrating U- tube densimeter and an Anton Paar RXA 156 refractometer, respectively. The measurements were done at T = (298.15, 303.15, 308.15, 313.15, and 318.15) K and at p = 0.1 MPa. The experimental data was used to calculate the derived properties for the binary mixtures namely:- excess molar volume (V E ), isentropic compressibility (ks), molar refractions (R) and deviation in refractive index (Δn). For the binary mixtures, (Py or EAA or TS + IL), V E was negative throughout the whole composition range which indicates the existence of attractive intermolecular interaction between (pyridine + IL) and (ethyl acetoacetate + IL) for (thiophene + IL), V E was negative at low mole fraction of thiophene and became positive at high mole fraction of thiophene. For the binary mixtures (pyridine + IL), (ethyl acetoacetate + IL), ks was positive indicating that the binary mixtures were more compressible than the ideal mixture. For the binary mixture (thiophene + IL) ks was negative at low thiophene composition and positive at high composition indicating that the binary mixture was less compressible than the ideal mixture at low thiophene composition and more compressible at high composition of thiophene. The molar refraction, R, is positive for the (Py or EAA or TS + IL) binary systems at T = (298.15 – 318.15) K, molar refraction decreases as the organic solvent composition increases. For the binary mixture (pyridine + [EMIM] [EtSO4]), Δn is negative at mole fractions < 0.75 of pyridine and positive at mole fractions >0.75 at all temperatures and decreases with an increase in temperature. For the binary system (ethyl acetoacetate + [EMIM] [EtSO4]), Δn values are positive over the entire composition range and at all temperatures and increases with an increase in temperature. Δn values for the (thiophene + IL) system are negative for mole fractions of thiophene < 0.62 and becomes positive for mole fractions of thiophene > 0.62 and Δn increases with an increase in temperature. The Redlich-Kister smoothing equation was used successfully for the correlation of V E and Δn data. The Lorentz- Lorenz equation gave a poor prediction of V E , but a good prediction of density or refractive index.


2012 ◽  
Vol 10 (5) ◽  
pp. 1584-1589 ◽  
Author(s):  
Viorica Meltzer ◽  
Elena Pincu

AbstractThe solid — liquid phase equilibria for binary mixture of citric acid with tartaric acid were measured using differential scanning calorimetry. The phase diagram showed the existence a simple eutectic behavior. The thermal properties of this system as heat of mixing, entropy of fusion and excess thermodynamic functions were computed using enthalpy of fusion values. The composition of eutectic was determined using a Tammann diagram.


2020 ◽  
Vol 2020 ◽  
pp. 1-6
Author(s):  
Can Liu ◽  
Kaiyu Zhao ◽  
Yafei Guo ◽  
Liping Guo ◽  
Tianlong Deng

Phase diagram is a powerful tool to guide the exploitation of thermal energy materials. Heat storage technology of phase-change material (PCM) was widely used to solve major energy utilization problems on large energy consumption and low utilization efficiency. In this work, a novel solid-liquid phase diagram of the binary system octadecanoic acid (C18-acid) + octadecanol (C18-OH) was investigated using the differential scanning calorimeter (DSC). The phase-change temperature and phase-change enthalpies against the composition of C18-acid and C18-OH were determined experimentally, and then the binary phase diagram of T–X (X expresses the mass fraction of C18-OH in the two components of C18-acid and C18-OH) was established for the first time. The phase diagram belongs to a binary simple system with one eutectic point, and the content of C18-OH at eutectic point is 0.4 in mass fraction. Neither solid solution nor copolymer was formed. The thermal chemical properties on the phase-change latent heat (Q), phase-change temperature (Tp), and the thermal conductivity (λ) for the composition at the eutectic point of the binary system are 198.7 J·g−1, 44.2°C, and 0.2352 W·m−1·K−1, respectively. This result indicates that the material at eutectic point has a great potential to be used as energy storage material for supply of heat and scouring bath.


Foods ◽  
2020 ◽  
Vol 9 (3) ◽  
pp. 327
Author(s):  
Bhagyashri L. Joshi ◽  
Birgitta I. Zielbauer ◽  
Thomas A. Vilgis

The comparative study between the mixing behavior of two binary mixtures of cocoa butter (CB)/tristearin (TS) and cocoa butter (CB)/coconut oil (CO) was investigated by using differential scanning calorimetry (DSC). The DSC profile for CB/TS blends resulted in a monotectic temperature–concentration (T–X) phase diagram, whereas a phase diagram of eutectic type was observed for CB/CO blends at 65 wt % of CO and 35 wt % CB; this suggests that the eutectic crystal can be formed when the saturated fat (blue = CO) is smaller in size compared to monounsaturated fat (orange = CB), whereas, for similar and larger size (red = TS) to CB, phase separation under crystallization is likely to occur (as shown in the graphical abstract). In order to understand the interaction between the binary systems, the profile of the phase diagram was fitted with Bragg–Williams approximation for estimation of the nonideality mixing parameter. Moreover, the morphology of the two different systems by polarized light microscopy (PLM) also depicted the variations in phase behavior by showing a significant change in CB morphology from spherulitic, grainy to granular and needlelike after the addition of TS and CO, respectively. Our findings emphasize the fundamental understanding of the interaction of bulk fat/fat and fat/oil system.


1979 ◽  
Vol 33 ◽  
pp. 19-24 ◽  
Author(s):  
Liliana Jannelli ◽  
Alberto Azzi ◽  
Antonio Lopez ◽  
Roberto Jalenti

2014 ◽  
Vol 790-791 ◽  
pp. 265-270
Author(s):  
Eszter Tatárka ◽  
Tamás Mende ◽  
András Roósz

This paper includes the binary and ternary liquidus temperature calculations of Sn-Bi-Cd system. The calculation was performed in cases of the surfaces of Sn, Bi and Cd phases too. First of all the liquidus curves were calculated in the binary systems (Bi phase in Bi-Cd and Bi-Sn systems, Sn phase in Sn-Cd and Sn-Bi systems, Cd phase in Cd-Sn and Cd-Bi systems). By using the calculated coefficients of the binary phase diagrams and the data from the digitalized ternary phase diagram, the liquidus temperature of Sn, Bi and the Cd phases were calculated. Finally the eutectic point of the binary liquidus curves and the eutectic valley of the Sn and the Bi surfaces were calculated by means of an iteration method.


2018 ◽  
Vol 19 (2) ◽  
pp. 99
Author(s):  
Yudi Wicaksono ◽  
Dwi Setyawan ◽  
S. Siswandono

The equilibrium phase diagram and thermodynamic properties of a mixture of drugs and additives are information related to various possible interaction processes between components. Therefore, we conducted a study of the phase diagrams and thermodynamic properties of binary mixtures of ketoprofen-succinic acid to estimate the types of interactions that may occur between these materials. The solid-liquid phase diagram of ketoprofen-succinic acid binary mixtures was determined by differential scanning calorimetry and composition of eutectic system was determined accurately using a Tamman diagram. The measurement of binary mixtures of ketoprofen-succinic acid with differential scanning calorimeter obtained the value of melting temperature and heat of fusion of ketoprofen- succinic acid system. The solid-liquid phase diagram of ketoprofen- succinic acid showed the formation of eutectic type phase diagram. The Tamman diagram showed accurately composition of the eutectic system of the Kp-SA binary mixtures at the mole fraction of Kp 0.87 and temperature 96.9oC.Keywords: ketoprofen, phase diagram, eutectic system, Tamman diagram


Sign in / Sign up

Export Citation Format

Share Document