Influence of Calcium Carbonate Powder on Water Requirement and Flowability of Self-Compacting Mortar Incorporating Bagasse Ash

2014 ◽  
Vol 887-888 ◽  
pp. 789-792
Author(s):  
Natt Makul ◽  
Ratsamee Sangsirimongkolying ◽  
Somkid Soottitantawat ◽  
Laongtip Mathurasa

Bagasse ash (BA) is a plentiful byproduct obtained from the process of electricity generation during sugar manufacturing. We investigated the influence of adding calcium carbonate powder (CCP) to self-compacting mortar (SCM) mixtures. Type 1 Portland cement was replaced with 0%, 20%, and 40% as-received or ground BA and CCP by weight. Mixtures were designed to yield a slump flow spread of 25.0 cm in diameter. The water requirement and V-funnel flow time of each SCM mixture were determined.

2019 ◽  
Vol 24 ◽  
pp. 8-13 ◽  
Author(s):  
Hamza Bensaci ◽  
Belkacem Menadi ◽  
Said Kenai

This paper reports on an experimental investigation using either rubber aggregates or steel fibres recycled from waste tires in the production of self-consolidating concrete composite (SCCC). Ten mixes are designed, one of them is the reference concrete. The natural aggregates are substituted by rubber particles by volume at 5, 10, 15, 20 and 30%. Recycled steel fibres are separately added to SCC mixes at volume fraction of 0.5, 0.8, 1 and 1.5%. The tested rheological properties of SCCC are slump flow diameter, T500 slump flow time, V-funnel flow time, L-box ratio, and the segregation resistance test. The compressive strength, the flexural strength, and total shrinkage are also measured on the 28 days. The experimental results show that the addition of recycled steel fibre is favorable for the SCC by means of increasing the flexural strength and reducing the shrinkage and the risk of cracking. Keywords: Self-consolidating concrete composite; Waste tires; Rubber; Steel fibers; Rheology, Strength


2014 ◽  
Vol 633 ◽  
pp. 130-135
Author(s):  
Yu Chuan Jiang ◽  
Da Huo ◽  
Hai Wen Teng ◽  
Jin E Xu

This paper presences the influence of coarse aggregate-space coefficient on the rheological properties of self-compacting concrete (SCC). The results indicate that coarse aggregate-space coefficient has significant influence on slump flow and V-funnel flow time of SCC, when the maximum aggregate particle size is 16mm and the volume ratio of sand and motor is 0.43, meanwhile water binder ratio is 0.38. The higher the coarse aggregate-space coefficient, the lager the slump flow, the shorter the V-funnel flow time. The range of coarse aggregate-space coefficient of SCC is suitable for 1.31~1.58 under the condition of the paper. The suitable range can guarantee excellent rheological properties and stability of SCC mixture. There is little effect of coarse aggregate-space coefficient on compressive strength in this paper tests.


2012 ◽  
Vol 193-194 ◽  
pp. 472-476
Author(s):  
Gritsada Sua-Iam ◽  
Natt Makul

This paper presents the effect of added limestone powder (LS) on the fresh and cured properties of self-compacting concrete (SCC) containing cathode ray tube glass waste. The concrete was produced using ordinary Portland cement at a water-cement (W/C) ratio of 0.38 by weight. CRT glass waste cullet was incorporated in river sand in proportions of 20 or 40%. To suppress potential viscosity effects limestone powder was added at levels of 5, 10, or 15% by weight. The slump flow time, slump flow diameter, V-funnel flow time, Marsh cone flow time, and setting time of the fresh concrete were tested, as well as the compressive strength and ultrasonic pulse velocity of the hardened concrete. The slump flow, V-funnel flow time, and Marsh cone flow increased with increasing limestone powder content, while the compressive strength and ultrasonic pulse velocity decreased. The results demonstrate that it is feasible to use limestone powder to produce SCC containing CRT glass waste as a fine aggregate replacement.


2017 ◽  
Vol 67 (325) ◽  
pp. 111 ◽  
Author(s):  
D. Burgos ◽  
A. Guzmán ◽  
K. M.A. Hossain ◽  
S. Delvasto

This study evaluates the use of large amounts of fine powders (fillers) derived from a Colombian volcanic material into the production of self-compacting concrete (SCC) for lower strength applications. The effects on SCC properties were studied with the incorporation of up to 50% of volcanic material of Tolima (MVT) as a partial substitute of the total weight of Portland cement. The workability was determined through slump flow, V-funnel, and L-box test. The compressive strength results were analyzed statistically by MINITAB. These demonstrated that 30% (by total weight of cementitious material) was the maximum allowable percentage of MVT to be used in the production of SCCs. Based on this, mechanical and permeability properties of SCC MVT 30% were evaluated at 28, 90 y 360 curing days. SCC MVT 30% exhibited compressive strength of 21 and 27 MPa after 28 and 360 days of curing, respectively.


2011 ◽  
Vol 250-253 ◽  
pp. 409-416 ◽  
Author(s):  
Md. Safiuddin ◽  
Md. Abdus Salam ◽  
Mohd Zamin Jumaat

Palm oil fuel ash (POFA) has been used successfully as a supplementary cementing material in various types of concrete. In the present study, self-consolidating concrete (SCC) was produced by using POFA as a partial replacement of ordinary portland cement (OPC). In total, sixteen SCC mixes were prepared by varying water to binder (W/B) ratio, POFA content, and high-range water reducer (HRWR). POFA was used by replacing 0–30% of OPC by weight at the W/B ratios ranging from 0.25 to 0.40. The filling ability, passing ability and segregation resistance of various SCC mixes were investigated. The filling ability was determined with respect to slump flow, 50-cm slump flow time, inverted slump cone flow spread and time, and V-funnel flow time. The passing ability was examined with respect to J-ring flow. In addition, the segregation resistance was assessed with regard to sieve segregation index and column segregation factor. Based on the data obtained, the correlations for the fresh properties of SCC were sought. The experimental findings showed strong correlations between most of the fresh properties of SCC.


2012 ◽  
Vol 174-177 ◽  
pp. 380-383 ◽  
Author(s):  
Hong Zhu Quan

The paper presents the results of series of experimental studies on effects of the type and replacement ratio of fly ash to portland cement on durability of concrete. Specimens made from 28 mixes of fly ash concrete with water binder ratio of 38% to 60% and with replacement ratio of fly ash of 25% to 70% and 5 mixes of portland cement concrete with water cement ratio of 38% to 75% were tested for compressive strengths, drying shrinkage, carbonation and resistance to freezing and thawing. As a results, drying shringkage decreased with fly ash addition regardless of type and replacement ratio of fly ash. Carbonation increased with fly ash replacement ratio, and type 1 fly ash showed higher carbonation. Type 1 and tpye 2 fly ashes showed practically no change in durability factor after 300 cycles of freezing and thawing up to 55% replacement, while type 4 fly ash showed rapid reduction in durability factor up to 40% replacement ratio.


2021 ◽  
Vol 301 ◽  
pp. 124072
Author(s):  
Ali Mardani-Aghabaglou ◽  
Hasan Tahsin Öztürk ◽  
Murat Kankal ◽  
Kambiz Ramyar

Sign in / Sign up

Export Citation Format

Share Document