The Damping Properties of the Natural Rubber Filled with ZnO

2014 ◽  
Vol 912-914 ◽  
pp. 390-394 ◽  
Author(s):  
Yan Fang Zhao ◽  
Dan Liu ◽  
Shuang Quan Liao ◽  
Xiao Xue Liao ◽  
Sheng Bo Lin

The research on the mechanical properties and thermal stability of the natural rubber filled with different dosage of Zinc oxide (ZnO). The results showed that with the increase of the content of the ZnO, the tensile strength first increased, then decreased the, but the tear strength showed a trend of increase,the thermal stability had improved; When the amount of ZnO added was 9, damping performance was better.

2017 ◽  
Vol 25 (1) ◽  
pp. 17-22 ◽  
Author(s):  
Lefan Li ◽  
Zongqiang Zeng ◽  
Zhifen Wang ◽  
Zheng Peng ◽  
Xiaodong She ◽  
...  

The oyster shell powder/natural rubber composites were successfully prepared by blending the modified oyster shell powder with natural rubber (NR). The oyster shell powder with a particle size of 209 nm were well distributed within the rubber matrix. The characteristic Fourier transform infrared spectroscopy (FTIR) absorption bands of both oyster shell powder and natural rubber were observed in the FTIR spectra of NR/oyster shell powder composites. The C-O absorption bands in carbonates of composites exhibit a shift from 1425 cm−1 to 1446 cm−1 which suggests the bonds formed among oyster shell powder, earth coupling agent and NR. The tensile strength and stress at 500% elongation increased with rising of the earth coupling agent. Composites with 1.5 parts per hundred rubber (phr) coupling agent achieved the highest mechanical properties, where an increase of 13.4% in tensile strength was found. The tensile strength and tear strength increased along with an increment of oyster shell powder. When the content of oyster shell powder attained 25–30 phr, the composites exhibited the best mechanical properties. In particular, the tensile strength and tear strength increased by 27.9% and 17.2% when compared with those of the control samples. Furthermore, the addition of the oyster shell powder leads to the improvement of thermal stability which is evidenced by an increase of 8 °C in the initial degradation temperature. The improvement of the mechanical properties and thermal stability of the composites have demonstrated that the oyster shell powder can be used as potential fillers for natural rubber.


2005 ◽  
Vol 78 (5) ◽  
pp. 793-805 ◽  
Author(s):  
A. Ansarifar ◽  
N. Ibrahim ◽  
M. Bennett

Abstract The effect of a large amount of precipitated amorphous white silica nanofiller, pre-treated with bis[3-triethoxysilylpropyl-)tetrasulfide (TESPT), on the mechanical properties of a sulfur-cured natural rubber (NR) was studied. TESPT chemically adheres silica to rubber and also prevents silica from interfering with the reaction mechanism of sulfur-cure. The silica particles were fully dispersed in the rubber, which was cured primarily by using sulfur in TESPT, or, by adding a small amount of elemental sulfur to the cure system. The cure was also optimized by incorporating sulphenamide accelerator and zinc oxide into the rubber. The hardness, tear strength, tensile strength, and stored energy density at break of the vulcanizate were substantially improved when the filler was added. Interestingly, these properties were also enhanced when the rubber was cured primarily by using sulfur in TESPT.


2014 ◽  
Vol 960-961 ◽  
pp. 262-269
Author(s):  
Ke Chen ◽  
Rui Wang

The natural rubber/polyvinyl alcohol (NR/PVA) blends containing various compatilizers grafted from NR were prepared using latex compounding techniques. The effects of various compatilizers on the morphology, mechanical properties and thermal behaviors were studied. The interface compatible performance of the blends were greatly improved with the presence of the compatilizers, and the phase dispertion of the blends achieved the best effect under the action of epoxidized natural rubber (ENR). The onset temperature of the thermal decomposition of ENR and graft copolymerization of methyl methacrylate (MMA) onto NR (NR-g-PMMA) increased obviously, but the maleic anhydride grafted onto NR (NR-g-MAH) drop obviously comparing to that of NR. The thermal stability of the blends were inferior to NR. With the presence of ENR, the tensile strength and elongation at break obtained great value which was ascribed the presence of the best phase dispertion, while the tear strength and shore A hardness obtained great value due to the addition of MAH-g-NR.


2005 ◽  
Vol 21 (3) ◽  
pp. 183-199
Author(s):  
G.K. Jana ◽  
C.K. Das

De-vulcanization of vulcanized elastomers represents a great challenge because of their three-dimensional network structure. Sulfur-cured gum natural rubbers containing three different sulfur/accelerator ratios were de-vulcanized by thio-acids. The process was carried out at 90 °C for 10 minutes in an open two-roll cracker-cum-mixing mill. Two concentrations of de-vulcanizing agent were tried in order to study the cleavage of the sulfidic bonds. The mechanical properties of the re-vulcanized rubber (like tensile strength, modulus, tear strength and elongation at break) were improved with increasing concentrations of de-vulcanizing agent, because the crosslink density increased. A decrease in scorch time and in optimum cure time and an increase in the state of cure were observed when vulcanized rubber was treated with high amounts of de-vulcanizing agent. The temperature of onset of degradation was also increased with increasing concentration of thio-acid. DMA analysis revealed that the storage modulus increased on re-vulcanization. From IR spectroscopy it was observed that oxidation of the main polymeric chains did not occur at the time of high temperature milling. Over 80% retention of the original mechanical properties (like tensile strength, modulus, tear strength and elongation at break) of the vulcanized natural rubber was achieved by this mechanochemical process.


2008 ◽  
Vol 584-586 ◽  
pp. 960-965 ◽  
Author(s):  
Tamara Kravchenko ◽  
Alexander Korshunov ◽  
Natalia Zhdanova ◽  
Lev Polyakov ◽  
Irina Kaganova

Annealed oxygen-free and tough-pitch copper samples have been processed by equalchannel angular pressing (ECAP) by route BC. The samples included 8 x 8 mm section pieces and a 40 mm diameter bar. Thermal stability was assessed based on the changes in the standard mechanical properties (conventional yield strength, tensile strength, elongation, proportional elongation and contraction) after annealing at different temperatures for 1 hour. Thermal stability of the same grade of material has been found to be different for different batches and to depend on the structural conditions of deformed material. The zone of thermal stability for copper of the two grades of interest does not depend on the material’s chemical composition.


e-Polymers ◽  
2010 ◽  
Vol 10 (1) ◽  
Author(s):  
Zhi-Fen Wang ◽  
Si-Dong Li ◽  
Xin Fu ◽  
Hua Lin ◽  
Xiao-Dong She ◽  
...  

AbstractThe starch/natural rubber composite was prepared by blending the modified starch by esterification with natural rubber latex. The modified starch particles are homogenously distributed throughout the natural rubber (NR) matrix. In comparison with the host NR, the thermal stability of composite is significantly improved. The thermal degradation temperatures (T) and reaction activation energy (E) of composite are higher than those of the pure NR. The hardness, stress at 500%, tensile strength, permanent deformation and tear strength of composite increase linearly with the increment of dosage of modified starch.


2013 ◽  
Vol 773 ◽  
pp. 668-672
Author(s):  
Jun Liang Liu ◽  
Ping Liu ◽  
Xiao Qiang Tang ◽  
Dong Zeng ◽  
Xing Kai Zhang ◽  
...  

In this paper, the blends of natural rubber with waste ground rubber powders have been prepared by mechano-chemical activation method. The influences of particle sizes on both processing performances and mechanical properties have been investigated. The results indicated that: the blends with waste ground rubber powders of smaller particle sizes approached to higher surface tensile and easily mechano-chemical activation, which led to the formation of complete homogenous re-vulcanization cross-linking structure and resulted in the improvements of the whole performances of the final products. The tensile strength, the elongation at break and tear strength approached to the highest value of 20.7MPa, 530% and 33.0 kN/m as the 100mesh waste ground rubber powders were used as the starting materials.


2020 ◽  
Author(s):  
Wenfa Dong ◽  
Ruogu Tang

<div>The water industry used NR was selected for blending with SBR. A series of NR/SBR vulcanizates were prepared through three different vulcanization systems, conventional vulcanization (CV), effective vulcanization (EV) and semi-effective vulcanization (SEV) respectively, basing on each formulation and optimum curing time. We examined the mechanical properties of NR/SBR vulcanizates including tensile strength, tear strength, elongation at break, modulus, Shore A hardnessand and relative volume abrasion. The results indicated that NR/SBR vulcanizates prepared in different systems differed in mechanical properties. Vulcanizates prepared via CV showed higher tensile and tear strength; vulcanizates prepared via EV had high modulus and hardness, and vulcanizates prepared via SEV performed high abrasion resistance. </div>


2012 ◽  
Vol 602-604 ◽  
pp. 690-695
Author(s):  
Hua Dong Wang ◽  
Rui Wang ◽  
Mao Fang Huang ◽  
Qi Yang

Thermoplastic vulcanizates (TPVs) based on epoxidized natural rubber (ENR) and polypropylene (PP) were prepared in an internal mixer at 180°C. The effects of curing systems (i.e., sulfur and peroxide) on morphological, rheological, thermal and mechanical properties were studied. It is found that the sulfur cured TPVs show higher tensile strength, tear strength and elongation at break than those cured with the DCP systems. The rheological analysis indicates that TPVs cured with DCP system show lower apparent shear viscosity than those with sulfur system. SEM studies show that TPVs vulcanized with DCP system exhibit smaller and finely dispersed rubber domains, which provides it higher thermal stability than sulfur cured TPVs.


Sign in / Sign up

Export Citation Format

Share Document