Theoretical Analysis on the Bond-Slip Constitutive Relationship between FRP Bars and Concrete under High Temperature

2010 ◽  
Vol 139-141 ◽  
pp. 340-343
Author(s):  
Zhen Qing Wang ◽  
Zhu Ju ◽  
Yu Lai Han ◽  
Xiao Ji Li

The primary objective of this study is to develop equations of the bond stress and relative slippage between fiber-reinforced polymer (FRP) bars and concrete exposed to different temperature ranging from 20°C to 190°C. Equations were established through theoretical analysis and simulation of the bond-slip constitutive relationship between FRP bars and concrete. According to the expressions, the variations of the bond stress and relative slippage between the two diffident materials can be evaluated at different locations. This paper made the analysis based on the theory of elasticity, using a bilinear model. An example to compare the results between experiment and theory had been proposed. It is indicated that the theoretical analysis here is in good agreement with the experimental data in related literature. The results can be applied to fire resistance design of FRP reinforced concrete structures.

2012 ◽  
Vol 446-449 ◽  
pp. 3165-3170 ◽  
Author(s):  
Yi Zheng ◽  
Jin Qing Jia ◽  
Li Li ◽  
Shi Kuan You

To study the bond behavior and the force transference of FRP plates adhered to masonry. In this paper, experiments of anchorage strength of FRP attached to masonry are done, a 100KN capacity hydraulic jack activated by a manual pump was used to load the specimen. The tensile strength was measured by using a loading transducer, and strain gauges were mounted directly onto the surface of the FRP composite to measure the strain during application of load. Besides the strain and bond stress development and distribution under every grade of loading were studied. Test results show that the maximum local bond stress is not influenced by the FRP bond length, instead it increases with masonry strength. At the same time, the local bond stress--slip curve is obtained. Based on the test results, two new bond stress-slip constitutive models between FRP and masonry were proposed and they turned out to be good matches to the experimental results, which indicate its valuable references for the corresponding codes and engineering applications.


2014 ◽  
Vol 900 ◽  
pp. 426-429
Author(s):  
Xiao Yong Wu ◽  
Hui Wang

In consideration of the light weight, high strength, corrosion resistance and construction is convenient of carbon fiber reinforced polymer (CFRP), using CFRP to strengthen structure is becoming more and more widely. However, there is no commonly accepted understanding of the constitutive relationship of the bonding shear stress and slip between concrete and CFRP bonded interface, especially the decline of the constitutive relation is more difficult to measure accurately. An aim of this paper is to improve the experiment to explore bond stress and slip (τδ) constitutive relation of the bonding interface, strive for the experiment to measure the τδ constitutive relation curve of CFRP-concrete interface. Double pull test was proposed with the improved specimen, using the horizontal load, eliminate additional bending moment influence and improve the experimental accuracy. 17 specimens were tested to measure the τδ curves, according to the features of the constitutive relation curves, the mechanical characteristics of the bonding interface was further analysised.


Author(s):  
Lei Wang ◽  
Zhaoping Song ◽  
Jin Yi ◽  
Jiayi Li ◽  
Feng Fu ◽  
...  

Abstract Basalt fiber reinforced polymer (BFRP) rebars reinforced coral aggregate concrete is a new type of concrete used in ocean engineering. In order to investigate the bond performance between BFRP rebars and coral concrete, 30 pull-out tests were carried out in 10 groups with different diameters of BFRP rebars, bonding lengths and strength of the coral concrete. The results show that good bonding between BFRP rebars and coral concrete were achieved. The main failure modes can be categorized as BFRP rebars pull out destruction, splitting failure of coral concrete and BFRP rebars fracture. The bond slip ($$\tau{\text{-}}s$$ τ - s ) curves of the BFRP rebars and coral concrete were obtained during the tests. It was found to be similar to the common concrete using fiber reinforced polymer (FRP) bars. The bond-slip relation can be roughly divided into micro-slip phase, slip phase, decline phase, and the residual stress stage. The bond between BFRP rebars and coral concrete increases with the increase of the bond length and diameter of BFRP rebars, but the average bond stress will decrease. Moreover, increasing the strength of coral concrete is effective to improve the bond performance of BFRP rebars. In this paper, the continuous bond slip model (Gao et al. in J Zhengzhou Univ 23:1–5, 2002) was used to represent the $$\tau{\text{-}}s$$ τ - s constitutive relationship of BFRP rebars and coral concrete. The analysis show that the proposed model has a high degree of accuracy in representing $$\tau{\text{-}}s$$ τ - s curve of BFRP rebars and coral concrete.


2020 ◽  
Vol 9 (1) ◽  
pp. 637-649 ◽  
Author(s):  
Zhan Guo ◽  
Qingxia Zhu ◽  
Wenda Wu ◽  
Yu Chen

AbstractThe article describes an experimental study on the bond–slip performance between the pultruded glass fiber-reinforced polymer (GFRP) tube and the nano-CaCO3 concrete. Taking the nano-CaCO3 concrete strength and GFRP tube thickness as primary parameters, nine specimens were designed and tested to study the influence of these parameters on the bond strength of the specimens. Besides, three specimens filled with the ordinary concrete were also tested by using the push-out tests to make comparisons with the bond performance of the specimens filled with nano-CaCO3 concrete. A total of four push-out tests were conducted on each specimen. The experimental results indicate that there are two types of axial load–slip curves for each specimen in four push-out tests. Moreover, comparison of the results of the push-out tests in the same direction shows that the bond failure load of the specimen decreases with the increase in the number of push-out tests. Based on the analysis of the test results, it is shown that the bond performance between the GFRP tube and the nano-CaCO3 concrete is better than that between the GFRP tube and the ordinary concrete. Furthermore, as the nano-CaCO3 concrete strength increases, the bond strength of the specimens decreases, indicating that the concrete strength has a negative effect on the bond strength. When the nano-CaCO3 concrete strength is relatively smaller (C20), the bond strength of the specimens decreases with the increase in the thickness of the GFRP tube. However, when the nano-CaCO3 concrete strength is relatively larger (C30 and C40), the bond strength of the specimens increases as the thickness of the GFRP tube increases.


Materials ◽  
2020 ◽  
Vol 13 (8) ◽  
pp. 1898
Author(s):  
Marek Urbański

A new type of HFRP hybrid bars (hybrid fiber reinforced polymer) was introduced to increase the rigidity of FRP reinforcement, which was a basic drawback of the FRP bars used so far. Compared to the BFRP (basalt fiber reinforced polymer) bars, modification has been introduced in HFRP bars consisting of swapping basalt fibers with carbon fibers. One of the most important mechanical properties of FRP bars is compressive strength, which determines the scope of reinforcement in compressed reinforced concrete elements (e.g., column). The compression properties of FRP bars are currently ignored in the standards (ACI, CSA). The article presents compression properties for HFRP bars based on the developed compression test method. Thirty HFRP bars were tested for comparison with previously tested BFRP bars. All bars had a nominal diameter of 8 mm and their nonanchored (free) length varied from 50 to 220 mm. Test results showed that the ultimate compressive strength of nonbuckled HFRP bars as a result of axial compression is about 46% of the ultimate strength. In addition, the modulus of elasticity under compression does not change significantly compared to the modulus of elasticity under tension. A linear correlation of buckling load strength was proposed depending on the free length of HFRP bars.


2008 ◽  
Vol 35 (3) ◽  
pp. 312-320 ◽  
Author(s):  
A. Zaidi ◽  
R. Masmoudi

The difference between the transverse coefficients of thermal expansion of fiber reinforced polymer (FRP) bars and concrete generates radial pressure at the FRP bar – concrete interface, which induces tensile stresses within the concrete under temperature increase and, eventually, failure of the concrete cover if the confining action of concrete is insufficient. This paper presents the results of an experimental study to investigate the thermal effect on the behaviour of FRP bars and concrete cover, using concrete slab specimens reinforced with glass FRP bars and subjected to thermal loading from –30 to +80 °C. The experimental results show that failure of concrete cover was produced at temperatures varying between +50 and +60 °C for slabs having a ratio of concrete cover thickness to FRP bar diameter (c/db) less than or equal to 1.4. A ratio of c/db greater than or equal to 1.6 seems to be sufficient to avoid splitting failure of concrete cover for concrete slabs subjected to high temperatures up to +80 °C. Also, the first cracks appear in concrete at the FRP bar – concrete interface at temperatures around +40 °C. Comparison between experimental and analytical results in terms of thermal loads and thermal strains is presented.


2018 ◽  
Vol 765 ◽  
pp. 355-360 ◽  
Author(s):  
Sakol Suon ◽  
Shahzad Saleem ◽  
Amorn Pimanmas

This paper presents an experimental study on the compressive behavior of circular concrete columns confined by a new class of composite materials originated from basalt rock, Basalt Fiber Reinforced Polymer (BFRP). The primary objective of this study is to observe the compressive behavior of BFRP-confined cylindrical concrete column specimens under the effect of different number of layers of basalt fiber as a study parameter (3, 6, and 9 layers). For this purpose, 8 small scale circular concrete specimens with no internal steel reinforcement were tested under monotonic axial compression to failure. The results of BFRP-confined concrete specimens of this study showed a bilinear stress-strain response with two ascending branches. Consequently, the performance of confined columns was improved as the number of BFRP layer was increased, in which all the specimens exhibited ductile behavior before failure with significant strength enhancement. The experimental results indicate the well-performing of basalt fiber in improving the concrete compression behavior with an increase in number of FRP layers.


2022 ◽  
pp. 136943322110651
Author(s):  
Ruiming Cao ◽  
Bai Zhang ◽  
Luming Wang ◽  
Jianming Ding ◽  
Xianhua Chen

Alkali-activated materials (AAMs) are considered an eco-friendly alternative to ordinary Portland cement (OPC) for mitigating greenhouse-gas emissions and enabling efficient waste recycling. In this paper, an innovative seawater sea-sand concrete (SWSSC), that is, seawater sea-sand alkali-activated concrete (SWSSAAC), was developed using AAMs instead of OPC to explore the application of marine resources and to improve the durability of conventional SWSSC structures. Then, three types of fiber-reinforced polymer (FRP) bars, that is, basalt-FRP, glass-FRP, and carbon-FRP bars, were selected to investigate their bond behavior with SWSSAAC at different alkaline dosages (3%, 4%, and 6% Na2O contents). The experimental results manifested that the utilization of the alkali-activated binders can increase the splitting tensile strength ( ft) of the concrete due to the denser microstructures of AAMs than OPC pastes. This improved characteristic was helpful in enhancing the bond performance of FRP bars, especially the slope of bond-slip curves in the ascending section (i.e., bond stiffness). Approximately three times enhancement in terms of the initial bond rigidity was achieved with SWSSAAC compared to SWSSC at the same concrete strength. Furthermore, compared with the BFRP and GFRP bars, the specimens reinforced with the CFRP bars experienced higher bond strength and bond rigidity due to their relatively high tensile strength and elastic modulus. Additionally, significant improvements in initial bond stiffness and bond strength were also observed as the alkaline contents (i.e., concrete strength) of the SWSSAAC were aggrandized, demonstrating the integration of the FRP bars and SWSSAAC is achievable, which contributes to an innovative channel for the development of SWSSC pavements or structures.


Sign in / Sign up

Export Citation Format

Share Document