Effect of Polypropylene Fiber on the Properties of Cement Mortar

2014 ◽  
Vol 919-921 ◽  
pp. 1903-1907
Author(s):  
Jun Pan ◽  
Fei Li ◽  
Xue Wu Zhang

This thesis discusses the influence of fly ash content, fiber content and fiber types on the performance of fiber reinforced concrete, through the flexural and compressive tests on fiber reinforced cement mortar, and the splitting tensile and bending tests on the fiber reinforced concrete. The test result shows that the adding of fly ash can better play the enhancement of polypropylene fiber; the change of the fiber content affects the flexural strength of cement mortar and obviously improves the splitting tensile strength of the reinforced concrete; and the polypropylene fiber and steel fiber have different enhancement on cement mortar due to their qualitative differences.

2018 ◽  
Vol 768 ◽  
pp. 326-330
Author(s):  
Bo Chen ◽  
Li Ping Guo ◽  
Wei Sun ◽  
Cong Ding

To evaluate the bending performance of a steel fiber-reinforced concrete shield segment, bending testing was conducted on prism specimens and full-scale segments with 30 kg/m3and 40 kg/m3steel fiber. The results show that, with increasing fiber content, the ultimate and equivalent flexural strengths increase, while the flexural toughness of the prism concrete specimen increases by approximately 15%. With increasing fiber content, the flexural capacity of the shield tunnel segment increases, the peak load increases by 24%, the crack number increases, and the average crack width decreases. During bending tests, the steel fiber-reinforced concrete segment shows remarkable characteristics of strain hardening and multiple cracking. The embedded parts reduce the cross-sectional area and cause stress concentration in the mid-span; therefore, the main crack form in this region.


Author(s):  
Ninghui Liang ◽  
Lianxi Ren ◽  
Shuo Tian ◽  
Xinrong Liu ◽  
Zuliang Zhong ◽  
...  

AbstractTo study the hybrid effects of polypropylene fiber and basalt fiber on the fracture toughness of concrete, 13 groups of notched concrete beam specimens with different fiber contents and mass ratios were prepared for the three-point bending test. Based on acoustic emission monitoring data, the initiation cracking load and instability load of each group of specimens were obtained, and the fracture toughness parameters were calculated according to the double-K fracture criterion. The test results show that the basalt fiber-reinforced concrete has a greater increase in initial fracture toughness, and the toughness of coarse polypropylene fiber-reinforced concrete is more unstable. Moreover, after the coarse polypropylene fiber content reaches 6 kg/m3 and the basalt fiber content reaches 3 kg/m3, increasing the content will not significantly improve the fracture toughness of the concrete. The polypropylene–basalt fiber will produce positive and negative effects when mixed, and the mass ratio of 2:1 was optimal. Finally, the fitting analysis revealed that the fracture process of polypropylene–basalt fiber-reinforced concrete (PBFRC) can be objectively described by the bilinear softening constitutive curve improved by Xu and Reinhardt.


2020 ◽  
Vol 2020 ◽  
pp. 1-11
Author(s):  
Furong Li ◽  
Guoxing Chen ◽  
Guizhong Xu ◽  
Yongyi Wu

In order to examine the compressive dynamic performance of polypropylene fiber reinforced concrete to be used for the retaining structure under the automobile collision magnitude, an experimental study was carried out by using hydraulic servo on concrete specimens with 4 different polypropylene fiber contents under 6 loading strain rates. The failure modes and stress-strain curves of concrete under different loading conditions were obtained. Then, by comparatively analyzing the mechanical characteristic parameters of polypropylene fiber reinforced concrete under different loading conditions, the following conclusions are drawn: with the increase of the polypropylene fiber content, the integrity of concrete upon compressive failure is gradually improved. When the polypropylene fiber content is relatively high, the static and dynamic failure modes are basically similar. With the increase of the loading strain rate, the peak compressive stress and elastic modulus of the polypropylene fiber reinforced concrete gradually increase. The increase in the polypropylene fiber content gradually intensifies the effect of loading strain rate on the peak compressive stress dynamic improvement coefficient. The peak strain of polypropylene fiber reinforced concrete is gradually increased with the increase of polypropylene fiber content, while the effect of the loading strain rate on the peak strain shows an obvious discreteness characteristic. Meanwhile, we proposed a relationship equation for describing the peak compressive stress dynamic improvement coefficient based on the coupling effect of the polypropylene fiber content and loading strain rate and further discussed the underlying stress mechanism in detail. Our research findings are of important research significance for the application and promotion of polypropylene fiber reinforced concrete in the engineering practice of retaining structures.


2011 ◽  
Vol 194-196 ◽  
pp. 1030-1034
Author(s):  
Xiao Rong Shao

This paper made experimental research on the compressive strength, axis compressive strength and splitting tension strength of polypropylene fiber-reinforced concretes at a fiber content of 0.9Kg/m3 in different ages which showed that: in the experiment of compressive strength, the strengths of C20 polypropylene fiber concretes in the ages was lower; the strength of C30 polypropylene fiber concretes in the age of 7 days was lower, the strengths in the ages of 14 days and 28 days were basically equal to; the strength of C40 polypropylene fiber concretes in the age of 7 days was basically equal to and in 28 days was higher than the strengths of ordinary concretes. In the experiment of axis compressive strength, the strengths of C20 polypropylene fiber concretes in the ages were lower; the strengths of C30 polypropylene fiber concretes in the age of 7 days and 14 days were lower and in the age of 28 days was basically equal to; the strengths of C40 polypropylene fiber concretes in the ages were basically equal to the strengths of ordinary concretes. In the experiment of splitting tension strength, the strengths of C20 and C30 polypropylene fiber concretes were lower; the strength of C40 polypropylene fiber concretes in the age of 28 days was basically equal to the strengths of ordinary concretes. Conclusion: the relationships between the strength of fiber concretes and ordinary concretes are correlated to the strength grades of concretes, namely, When the strength degrade of concretes is low, the strength of polypropylene fiber concretes is lower, but the strength reaches closer to or exceeds the strength of ordinary concretes along with the increase of the strength grade of concretes.


Materials ◽  
2021 ◽  
Vol 14 (2) ◽  
pp. 445
Author(s):  
José Valdez Aguilar ◽  
César A. Juárez-Alvarado ◽  
José M. Mendoza-Rangel ◽  
Bernardo T. Terán-Torres

Concrete barely possesses tensile strength, and it is susceptible to cracking, which leads to a reduction of its service life. Consequently, it is significant to find a complementary material that helps alleviate these drawbacks. The aim of this research was to determine analytically and experimentally the effect of the addition of the steel fibers on the performance of the post-cracking stage on fiber-reinforced concrete, by studying four notch-to-depth ratios of 0, 0.08, 0.16, and 0.33. This was evaluated through 72 bending tests, using plain concrete (control) and fiber-reinforced concrete with volume fibers of 0.25% and 0.50%. Results showed that the specimens with a notch-to-depth ratio up to 0.33 are capable of attaining a hardening behavior. The study concludes that the increase in the dosage leads to an improvement in the residual performance, even though an increase in the notch-to-depth ratio has also occurred.


2021 ◽  
Vol 11 (3) ◽  
pp. 1112
Author(s):  
Nikita Belyakov ◽  
Olga Smirnova ◽  
Aleksandr Alekseev ◽  
Hongbo Tan

The problem of damage accumulation in fiber-reinforced concrete to structures supporting underground workings and tunnel linings against dynamic loading is insufficiently studied. The mechanical properties were determined and the mechanism of destruction of fiber-reinforced concrete with different reinforcement parameters is described. The parameters of the Concrete Damaged Plasticity model for fiber-reinforced concrete at different reinforcement properties are based on the results of lab experiments. Numerical simulation of the composite concrete was performed in the Simulia Abaqus software package (Dassault Systemes, Vélizy-Villacoublay, France). Modeling of tunnel lining based on fiber-reinforced concrete was performed under seismic loading.


Sign in / Sign up

Export Citation Format

Share Document