Nanomaterials in PU Foam for Enhanced Sound Absorption at Low Frequency Region

2014 ◽  
Vol 938 ◽  
pp. 170-175 ◽  
Author(s):  
R. Gayathri ◽  
R. Vasanthakumari

Lot of research is going on to develop materials suitable for absorbing sound and reducing noise. By virtue of their superior vibration damping capability and attractive characteristics such as visco elasticity, simple processing and commercial availability, polyurethane foams are extensively applied not only in automotive seats but also in various acoustical parts. However, the sound absorption coefficient of polyurethane foams is high (0.8 1.0) in high frequencies in the range 300 to 10000Hz while it is found to be low (0 to 0.5) at low frequencies (10 to 200 Hz). In this study new polyurethane based porous composites were synthesized by in situ foam rising polymerization of polyol and diisocyanate in the presence of fillers such as nanosilica (NS) and nanoclay (NC). The effect of these fillers at various concentrations up to 2% was studied for sound absorption characteristics in the frequency range 100-200Hz. Sound absorption coefficient was determined using standing wave impedance tube method. The sound absorption coefficient of filled PU foams increases from 0.5 to 0.8 with frequency increase from 100 to 200 Hz at higher content of the nanofillers employed. This research work is further extended to study the sound absorption capacity of unfilled PU foam with varying thickness and also hybrid foams with woven glass (GFC) and polyester cloth (PEC). The unfilled foam with 60mm of thickness gives sound absorption value same as that of 15mm of filled foam. Further enhanced absorption value is achieved with PU/NS-GFC hybrid. The results obtained are explained based on the porosity of composite structure and foam cell size.Key words Polyurethane foam, sound absorption coefficient, nanosilica, nanoclay, low frequency sound.

2018 ◽  
Vol 140 (3) ◽  
Author(s):  
Xuezhi Zhu ◽  
Zhaobo Chen ◽  
Yinghou Jiao ◽  
Yanpeng Wang

In order to broaden the sound absorption bandwidth of a perforated panel in the low frequency range, a lightweight membrane-type resonator is installed in the back cavity of the perforated panel to combine into a compound sound absorber (CSA). Because of the great flexibility, the membrane-type resonator can be vibrated easily by the incident sound waves passing through the holes of the perforated panel. In the low frequency range, the membrane-type resonator and the perforated panel constitute a two degrees-of-freedom (DOF)-resonant type sound absorption system, which generates two sound absorption peaks. By tuning the parameters of the membrane type resonator, a wide frequency band having a large sound absorption coefficient can be obtained. In this paper, the sound absorption coefficient of CSA is derived analytically by combining the vibration equation of the membrane-type resonator with the acoustic impedance equation of the perforated panel. The influences of the parameters of the membrane-type resonator on the sound absorption performance of the CSA are numerically analyzed. Finally, the wide band sound absorption capacity of the CSA is validated by the experimental test.


2021 ◽  
Vol 887 ◽  
pp. 399-405
Author(s):  
L.N. Shafigullin ◽  
N.V. Romanova ◽  
G.R. Shafigullina

The paper shows the applicability of expandable graphite METOPAC EG 350-50 (80) in a rigid PU foam system as a substance that reduces the flammability (flame retardant) and improves the usability. The studies of the physical mechanical and thermal properties of PU foam with a higher graphite content revealed a higher normal sound absorption coefficient; insignificant influence on the thermal conductivity; a higher decomposition onset temperature; more difficult ignition. PU foam sample with a ratio of 15 graphite weight fractions to 100 polyol weight fractions has the highest physical mechanical and thermal properties, and, as compared to the starting PU foam, it features an increase in normal sound absorption coefficient by an average of 3 times; a decrease in the thermal conductivity by 8 %; an increase in the decomposition onset temperature by 6.7 °С. Therefore, the modification of PU foam with expandable graphite makes it possible not only to develop hardly combustible polyurethanes but also to improve its physical mechanical and thermal properties.


2019 ◽  
Vol 8 (3) ◽  
pp. 6815-6818

Polyurethane foams are extensively used as sound absorbing materials in various automobile parts. However, the sound absorption capability of polyurethane foam ispoorin low frequency range. The advancement of technologies to develop newerpolymer composites, provide scope to develop composite polyurethane foam with better sound absorption coefficient in low frequency range. Composite foams are made with two different filler materials as crumb rubber and coconut fiber, in varying weight fraction of up to 2.0%. Density, Sound absorption coefficient, and Noise reduction, measurements were done on all polyurethane foams. The effect offiller additionsto polyurethane foams ondensity and sound absorption coefficient at low frequency are discussed.The 1.4 % crumb rubber polyurethane foam offers the best combination of low density, improved sound absorption coefficient value and noise absorption at low frequency.


2018 ◽  
Vol 89 (16) ◽  
pp. 3342-3361 ◽  
Author(s):  
Tao Yang ◽  
Ferina Saati ◽  
Kirill V Horoshenkov ◽  
Xiaoman Xiong ◽  
Kai Yang ◽  
...  

This study presents an investigation of the acoustical properties of multi-component polyester nonwovens with experimental and numerical methods. Fifteen types of nonwoven samples made with staple, hollow and bi-component polyester fibers were chosen to carry out this study. The AFD300 AcoustiFlow device was employed to measure airflow resistivity. Several models were grouped in theoretical and empirical model categories and used to predict the airflow resistivity. A simple empirical model based on fiber diameter and fabric bulk density was obtained through the power-fitting method. The difference between measured and predicted airflow resistivity was analyzed. The surface impedance and sound absorption coefficient were determined by using a 45 mm Materiacustica impedance tube. Some widely used impedance models were used to predict the acoustical properties. A comparison between measured and predicted values was carried out to determine the most accurate model for multi-component polyester nonwovens. The results show that one of the Tarnow model provides the closest prediction to the measured value, with an error of 12%. The proposed power-fitted empirical model exhibits a very small error of 6.8%. It is shown that the Delany–Bazley and Miki models can accurately predict surface impedance of multi-component polyester nonwovens, but the Komatsu model is less accurate, especially at the low-frequency range. The results indicate that the Miki model is the most accurate method to predict the sound absorption coefficient, with a mean error of 8.39%.


2006 ◽  
Vol 15-17 ◽  
pp. 422-427
Author(s):  
Tetsumune Kuromura ◽  
Masataka Hakamada ◽  
Y. Chen ◽  
Hiromu Kusuda ◽  
Mamoru Mabuchi

Porous Al specimens with a pore size range from 212-300 to 610-700 μm, a porosity from 85 to 95% and a specimen thickness from 2 to 20 mm were produced by the spacer method, and their sound absorption capacity was investigated. For these specimens, sound absorption coefficient increased with increasing porosity. On the other hand, sound absorption coefficient varied inconsistently with the variation of pore sizes. The latter may be attributed to variation of aperture sizes of each specimen because the porous Al specimens with differerent pore sizes produced by the spacer method should have different aperture sizes. Sound absorption coefficient increased at the frequency below 2000 Hz with increasing specimen thickness.


2020 ◽  
Vol 15 ◽  
pp. 155892502091086
Author(s):  
Lihua Lyu ◽  
Jing Lu ◽  
Jing Guo ◽  
Yongfang Qian ◽  
Hong Li ◽  
...  

In order to find a reasonable way to use the waste corn husk, waste degummed corn husk fibers were used as reinforcing material in one type of composite material. And polylactic acid particles were used as matrix material. The composite materials were prepared by mixing and hot-pressing process, and they were processed into the micro-slit panel. Then, the multi-layer structural sound absorption composite materials were prepared sequentially by micro-slit panel, air cavity, and flax felt. Finally, the sound absorption properties of the multi-layer structural composite materials were studied by changing flax felt thickness, air cavity depth, slit rate, and thickness of micro-slit panel. As the flax felt thickness varied from 0 to 10 mm in 5 mm increments, the peak of sound absorption coefficient shifted to low frequency. The sound absorption coefficient in the low frequency was improved with the air cavity depth varied from 0 to 10 mm in 5 mm increments. With the slit rate increased from 3% to 7% in 2% increments, the peak of sound absorption coefficient shifted to high frequency. With the thickness of micro-slit panel increased from 2 to 6 mm in 2 mm increments, the sound absorption bandwidth was broaden, and the peak of sound absorption coefficient was increased and shifted to low frequency. Results showed that the highest sound absorption coefficient of the multi-layer structural composite materials was about 1 under the optimal process conditions.


2018 ◽  
Vol 933 ◽  
pp. 55-60
Author(s):  
Yong Zhang ◽  
Zong Min Chen ◽  
Zhao Jun Wang ◽  
Jing Hui Liu

Three kinds of aluminum foam of different pore sizes were prepared with a tailor-made low-pressure infiltration device. CaO granules in three sizes (0.45~0.71mm,0.71~090mm and 1.25~1.60mm) were selected as infiltrating agents. The processing parameters were as follows: granules preheat temperature of 700 °C,infiltration pressure of 0.04 MPa and aluminum liquid temperature of 720 °C. In order to improve the removal performance and porosity, mixture of CaO powder of finer than 300 mesh and pure alcohol was mixed uniformly with granules, which made the slurry-coating granules conformal contacts rather than point contacts as in the traditional infiltration method. The testing results show that among all aluminum foam specimens tested with transfer function methods, two kinds have high sound absorption coefficient in low frequency (250~1600Hz).


2015 ◽  
Vol 773-774 ◽  
pp. 210-215
Author(s):  
Muhd Hafeez Zainulabidin ◽  
M.H.M. Yusuff ◽  
Al Emran Ismail ◽  
M.Z. Kasron ◽  
A.S.M. Kassim

This paper describes the investigation and analysis on two materials in which one material is a relatively good sound absorber at low frequency range and another is a relatively good sound absorber at high frequency range, combined together in layers to form a better sound absorber for a wider range of frequencies. The layer combinations of the materials are varied and the values of Sound Absorption Coefficient, α are measured experimentally by using impedance tubes with two microphones transfer function method according to ISO 10534-2 standard. The results obtained are compared in terms of the order of material and the number of layer combinations of materials for each sample. The orders of combinations and number of layers of combinations have significant influence on the sound absorption characteristics. The order of materials has reversed effect on Sound Absorption Coefficient, α as the number of layer combination is increased. Increase in the combination number will make the specimen performed relatively better at a wider frequency range.


Sign in / Sign up

Export Citation Format

Share Document