Experimental Investigation of Aqueous Cerium Oxide Nanofluid Blend in Diesel Engine

2014 ◽  
Vol 938 ◽  
pp. 286-291 ◽  
Author(s):  
S.P. Venkatesan ◽  
P.N. Kadiresh ◽  
K. Suresh Kumar

Influence of aqueous cerium oxide nanofluid on the major physicochemical properties of diesel and the performance and exhaust emission characteristics of diesel engine were investigated. 50cc of aqueous cerium oxide nanofluid was dispersed into 1 litre of diesel fuel for preparing test fuel. The diesel with and without aqueous cerium oxide nanofluid was tested in a direct injection diesel engine at 0%, 25%, 50%, 75%, and 100% of full load condition. nanosized cerium oxide has more surface area, higher activity and can react with water at high temperature to generate hydrogen and improve fuel combustion. Also cerium oxide acts as oxygen buffer causing simultaneous oxidation of hydrocarbons as well as the reduction of oxides of nitrogen. The results on the combustion of diesel mixed with aqueous Cerium oxide nanofluid showed an increase in total heat of combustion and a decrease in concentration of HC, NOx and smoke in the exhaust emission from the diesel engine.

Author(s):  
R. Anand ◽  
N. V. Mahalakshmi

Exhaust gas recirculation (EGR) combined with particulate trap technology has proven to reduce nitrogen oxides (NOx) and smoke emissions simultaneously at relatively low cost compared to other reduction strategies. An experimental study was conducted on a single cylinder, direct injection (DI) diesel engine to study the effect of EGR on engine performance and emissions under constant speed of 1500 rpm at various loads. In the present work hot and cool EGR were used to control the formation of NOx in a D.I diesel engine. The findings of both hot and cool EGR are discussed and compared at full load condition corresponding to the maximum allowable EGR proportion of 15%. It is found that cool EGR has a substantial reduction in NOx and smoke emissions compared to hot EGR. Based on the above result it is found that suitable particulate trap which is cost effective and high trapping efficiency is needed before the EGR cooler to reduce the smoke emissions to meet the emission standards. In the present study a substrate made of clay material was used in the particulate trap. They were made into spheres and coated with copper and zinc oxide catalyst material. The results have shown that EGR combined with particulate trap simultaneously reduces the NOx and smoke emissions by 63% and 42% respectively where as it increases brake specific fuel consumption by 10% compared to baseline mode.


Author(s):  
S. Padmanabhan ◽  
C. Joel ◽  
Linda Joel ◽  
Obulareddy Yuvatejeswar Reddy ◽  
K.G.D. Sri Harsha ◽  
...  

Considering the amount of waste plastics has risen significantly, energy may be extracted from it. Not only is it possible to dispose of waste plastics by converting them to fuel, but it is also possible to extract energy from them. Our research is motivated by the prospect of using waste plastics as a source of energy through waste plastic pyrolysis oil (WPPO). The innovation of this research is that it will assess the efficiency of plastic pyrolysis oil derived from Low-Density Polyethylene (LDPE) on a Thermal Barrier Coated (TBC) piston engine. The incremental ratio of WPPO to pure diesel with the addition of diethyl ether (DEE) was determined and its output and exhaust emission standards were evaluated using a direct injection single cylinder low heat rejection diesel engine. The results for the WPPO blends were promising as with TBCW20DEE10 demonstrating a 5 to 15% increase in carbon monoxide under different load conditions. TBCW20DEE10 confirmed a greater reduction of hydrocarbons varying from 5 to 12 %. At half load condition, TBCW20DEE10 emits approximately 3.5 % less unit of smoke.


Author(s):  
P. Venkateswara Rao ◽  
S. Ramesh ◽  
S. Anil Kumar

The primary objective of this work is to reduce the particulate matter (PM) or smoke emission and oxides of nitrogen (NOx emissions) the two important harmful emissions and to increase the performance of diesel engine by using oxygenated additives with diesel as blend fuel. Formulation of available diesel fuel with additives is an advantage than considering of engine modification for improvement of higher output. From the available additives, three oxygenates are selected for experimentation by considering many aspects like cost, content of oxygen, flashpoint, solubility, seal etc. The selected oxygenates are Ethyl Aceto Acetate (EAA), Diethyl Carbonate (DEC), Diethylene Glycol (DEG). These oxygenates are blended with diesel fuel in proportions of 2.5%, 5% and 7.5% by volume and experiments were conducted on a single cylinder naturally aspirated direct injection diesel engine. From the results the conclusion are higher brake power and lower BSFC obtained for DEC blends at 7.5% of additive as compared to EAA, DEG and diesel at full load. In case of DEC blends the smoke emission is lower, whereas NOx emissions are very low in case of EAA additive blend fuels. The DEC can be considered is the best oxygenating additive to be blend with diesel in a proportion of 7.5% by volume.


1987 ◽  
Vol 109 (2) ◽  
pp. 187-192 ◽  
Author(s):  
A. C. Alkidas

The factors influencing premixed burning and the importance of premixed burning on the exhaust emissions from a small high-speed direct-injection diesel engine were investigated. The characteristics of premixed and diffusion burning were examined using a single-zone heat-release analysis. The mass of fuel burned in premixed combustion was found to be linearly related to the product of engine speed and ignition-delay time and to be essentially independent of the total amount of fuel injected. Accordingly, the premixed-burned fraction increased with increasing engine speed, with decreasing fuel-air ratio and with retarding injection timing. The hydrocarbon emissions did not correlate well with the premixed-burned fraction. In contrast, the oxides of nitrogen emissions were found to increase with decreasing premixed-burned fraction, indicating that diffusion burning, and not premixed burning, is the primary source of oxides of nitrogen emissions.


Author(s):  
Lennox Siwale

It is agreed by scientists world-wide that continued burning of petroleum oils without intervention is a great threat to the environment. In this study a comparison is made of the extent of emissions produced between diesel and gasoline engines using oxygenated blends. In the gasoline engine 20% methanol -80%, gasoline M20 was used. In the diesel engine, 20% n-butanol and 80% diesel B20 was the test fuel. The gasoline engine was a naturally aspirated Suzuki RS-416 1.6L engine type and the diesel type engine was a 1Z type, 1.9L Turbo-Direct injection (TDI). The results obtained were as follows: the NOx emissions increased with an increasing BMEP for Diesel Fuel (DF) but was slightly lower than the blend B20 at 50 and 75 % load; whereas using M20, Nox reduced in reference to gasoline fuel (GF) but was four times higher than that obtained in diesel engine; using B20 diminished the quality of Unburned hydrocarbons (uHc) emissions in diesel engine based on the reference fuel DF. The range of emissions of uHC however was far less in the diesel engine than in the gasoline engine.10-60 ppm and 600 to 700 ppm respectively. The blend M20 reduces uHc more than the GF above 25% brake mean effective pressure (bmep).The formation of Carbon monoxide (CO) was rapid for M20 than GF; emission concentration of CO in B20 increased above DF. Exhaust gases temperature (EGT) was lower for all oxygenated blends, M20 and B20, than neat or pure hydrocarbon (HC) fuels: GF and DF.


Author(s):  
R. Anand ◽  
G. R. Kannan ◽  
P. Karthikeyan

The growing environmental concerns and the depletion of petroleum reserves have caused the development of alternative fuels. Biodiesel and alcohols are receiving increasing attention as alternative fuels for diesel engines due to well oxygenated, renewable fuels. In this study, a single cylinder, naturally aspirated, direct injection diesel engine has been experimentally investigated using ethanol-blended waste cooking oil methyl ester. Various proportion of biodiesel-ethanol blends were used in stability test at the different temperatures from 10 °C to 40 °C in the increment of 10°C. Based on the stability tests and improvement in fuel properties, B90E10 (90% biodiesel and 10% ethanol) and B80E20 (80% biodiesel and 20% ethanol) were selected for this investigation. Test results revealed that the improved engine characteristics with the use of B9E10 especially in comparison with B80E20. Reduction in brake thermal efficiency by 3.8% and slightly higher brake specific energy consumption of 15.1% were observed with B90E10 when compared to diesel at 100% load condition. Carbon monoxide, unburnt hydrocarbon, nitric oxide and smoke emission of B90E10 were reduced by 0.09% by vol., 10 ppm, 187 ppm and 12.9%, respectively compared to diesel. B90E10 exhibited lower peak pressure of 70.5 bar, slightly longer ignition delay of 14.2 °CA, and combustion duration of 43.3 °CA was also observed at 100% load condition.


Author(s):  
Seung Hyun Yoon ◽  
Jin Woo Hwang ◽  
Chang Sik Lee

An experimental investigation was performed on the effect of injection strategy on the combustion, exhaust emission characteristics and the particle size distribution in a small direct-injection (DI) compression ignition engine fueled with a biodiesel-ethanol blended fuel. The results obtained from the experiment of the particle distributions for the blended fuel are compared with that of diesel fuel. In addition to the distribution of the particles, exhaust emissions, such as oxides of nitrogen (NOx), hydrocarbon (HC), and carbon monoxide (CO) emissions, and combustion characteristics under different injection parameters were investigated. The injection parameters in terms of first injection mass and second injection mass were varied to investigate the combustion and emission reduction in the biodiesel and ethanol blended fuel. The results show that the first combustion and heat release generated from the first injection, and then the second injected fuel rapidly combusted with an extremely short ignition delay. The maximum combustion pressures and heat releases of a biodiesel-ethanol blend are generally higher than those of the ultra-low sulfur diesel (ULSD) in all cases, regardless if an equal quantity of fuel is injected. The soot and NOx emissions for a blend are relatively lower than the ULSD at all test ranges. In addition, HC and CO emissions for a blend also indicated relatively low levels compared with those of the ULSD. Double injection cases for biodiesel-ethanol blend, the number concentrations of larger size particles which are closely related to the weight of smoke emissions mass were significantly reduced.


Author(s):  
V Pirouzpanah ◽  
R Khoshbakhti Sarai

An experimental study was conducted to determine the performance and exhaust emission characteristics of an automotive direct injection dual-fuelled diesel engine. Natural gas was used such that 65 per cent of engine brake power was supplied from compressed natural gas and the rest was supplied from diesel fuel. The objective of this work is to investigate the possibility of decreasing exhaust emission with the lowest performance sacrifice. At part loads, a dual-fuelled engine inevitably suffers from lower thermal efficiency and higher carbon monoxide (CO) emission. This is mainly due to leaner mixture and incomplete combustion, which is a consequence of the smaller amount of pilot fuel. To resolve these problems, the e ects of cooled exhaust gas recirculation (EGR) were investigated. The experimental results show that the application of EGR, at higher loads with 10 per cent EGR and at part loads with 15 per cent EGR, can considerably reduce NO x and other exhaust emissions such as unburned hydrocarbons, CO and soot. Results show that the performance parameters almost remain at the baseline engine level.


Sign in / Sign up

Export Citation Format

Share Document