scholarly journals Direct Thermal Method of Aluminium 7075

2014 ◽  
Vol 939 ◽  
pp. 400-408 ◽  
Author(s):  
Asnul Hadi Ahmad ◽  
Sumsun Naher ◽  
Dermot Brabazon

The evolution of microstructure affect from different pouring temperatures and holding times using a direct thermal method is presented in this paper. The direct thermal method is one of the thermal techniques which are used to produce semi-solid metal feedstock. In this experimental work, aluminium 7075 alloy was used. The experiments were carried out by processing a sample with a 0.7 °C/s cooling rate to evaluate the formation of the microstructure. In direct thermal method experiment, a molten 7075 was poured into a cylindrical copper mould at different pouring temperatures of 680 °C and 660 °C meanwhile the holding time of 20 s, 40 s and 60 s before quenched into room temperature water. The sample processed by the cooling rate of 0.7 °C/s produced a large microstructure. The formation of a spheroidal microstructure was obtained with the combination of a suitable pouring temperature and holding time. The pouring temperature of 665 °C and the holding time of 60 s produced a finer and uniform microstructure that is suitable for semi-solid feedstock.

Author(s):  
M. F. M. Tajudin ◽  
A. H. Ahmad ◽  
M. M. Rashidi

This paper highlights the effects of pouring temperature and holding time on the mechanical properties of aluminium 6061 semisolid feedstock billets. The semisolid metal feedstock billets were prepared by a direct thermal method (DTM), in which the molten metal was poured into a cylindrical copper mould with a different combination of pouring temperature and holding time before it was solidified in room temperature water. The results show that the sample with pouring temperature slightly above aluminium 6061 liquidus temperature has the lowest porosity, thereby the highest mechanical properties value. The sample with a pouring temperature of 660 °C and holding time of 60 s has the density, tensile strength and hardness properties of 2.701 g/cm3, 146.797 MPa, and 86.5 HV, respectively. Meanwhile, the sample at a pouring temperature of 640 °C and holding time of 20 s has density, tensile strength and hardness properties of 2.527 g/cm3, 65.39 MPa, and 71.79 HV, respectively. The density and fractography tests were conducted to confirm the existence of porosity within the samples. The results from these experimental works suggested that the mechanical properties of DTM semisolid feedstock billet merely depended on processing parameters, which influenced the porosity level within the feedstock billet, thus directly affected their mechanical properties.


2006 ◽  
Vol 510-511 ◽  
pp. 782-785 ◽  
Author(s):  
Suk Won Kang ◽  
Ki Bae Kim ◽  
Dock Young Lee ◽  
Jung-Hwa Mun ◽  
Eui Pak Yoon

2015 ◽  
Vol 651-653 ◽  
pp. 1569-1574 ◽  
Author(s):  
Asnul Hadi Ahmad ◽  
Sumsun Naher ◽  
Dermot Brabazon

Abstracts: This paper presents an overview of measured mechanical properties of thixoformed aluminium 7075 feedstock produced by the direct thermal method (DTM). The DTM feedstock billets were processed with a pouring temperature of 685 °C and holding periods of 20 s, 40 s and 60 s before being quenched and subsequently thixoformed. A conventionally cast feedstock billet was produced with a pouring temperature of 685 °C and was allowed to solidify without quenching. The feedstock billets were later formed by an injection test unit in the semi-solid state. Tensile testing was then conducted on the thixoformed feedstock billets. Tensile properties for 7075 DTM thixoformed feedstock billets were found significantly influenced by the thixoformed component density. Samples with longer holding times were found to have higher density and higher tensile strength.


2010 ◽  
Vol 146-147 ◽  
pp. 1561-1564
Author(s):  
Ying Zhang ◽  
Qiang Ma ◽  
Shui Sheng Xie ◽  
Mao Peng Geng ◽  
Jin Hua Xu ◽  
...  

The experiment of the rheocasting-rolling for semi-solid magnesium was carried out on the equipment made by ourselves in our laboratory. Semi-solid AZ91D magnesium slurry was prepared by cooling slope and the evolution of microstructure under different technological parameters such as pouring temperature, casting temperature, standing time, angle of slope and length of slope et al were studied. The results show that the technological parameters have great influence on the microstructure of the semi-solid magnesium slurry. The results show that the optimum parameters of slope method were: pouring temperature 630 degrees;angle of slope 60°;length of slope 0.570m.


2013 ◽  
Vol 652-654 ◽  
pp. 947-951
Author(s):  
Hui Li ◽  
Yun Li Feng ◽  
Da Qiang Cang ◽  
Meng Song

The static continuous cooling transformation (CCT)curves of 3.15 Si-0.036 C-0.21 Mn-0.008 S-0.008 N-0.022 Al are measured on Gleeble-3500 thermal mechanical simulator, the evolution of microstructure and the tendency of hardness are investigated by optical microscope (OM) and hardness tester. The results show that there is no evident change in microstructure which mainly are ferrite and little pearlite under different cooling rates, but the transition temperature of ferrite is gradually reduced with the increase of cooling rate. When the cooling rate is increased from 0.5°C/s to 20°C/s, the ending temperatures of phase transformation are decreased by 118°C, when cooling rate reaches to 10, Widmanstatten ferrite appears. The hardness of the steel turns out gradual upward trend with the increase of cooling rate.


2022 ◽  
Vol 327 ◽  
pp. 263-271
Author(s):  
Gan Li ◽  
Jin Kang Peng ◽  
En Jie Dong ◽  
Juan Chen ◽  
Hong Xing Lu ◽  
...  

There is a strong demand for high-strength aluminum alloys such as 7075 aluminum alloy to be applied for rheocasting industry. The overriding challenge for the application of 7075 alloy is that its solid fraction is very sensitive to the variation of temperature in the range of 40% ~ 50% solid fraction, which inevitably narrows down the processing window of slurry preparation for rheocasting process. Therefore, in this work, a novel method to prepare semi-solid slurry of the 7075 alloy, so called Enthalpy Control Process (ECP), has been developed to grapple with this issue. In the method, a medium-frequency electromagnetic field was applied on the outside of slurry preparation crucible to reduce the temperature difference throughout the slurry. The effect of processing parameters, including heating power, heating time, the initial temperature of crucible and melt weight, on the temperature field of the semi-solid slurry was investigated. The results exhibited that although the all the processing parameters had a great influence on the average temperature of the slurry, heating time was the main factor affecting the maximum temperature difference of the slurry. The optimum processing parameters during ECP were found to be heating power of 7.5 KW, the initial temperature of crucible of 30 °C ~ 200 °C and melt weight of 2 kg.


Sign in / Sign up

Export Citation Format

Share Document