Research on Characteristics of Microbe Spatiotemporal Distribution in Indoor Air

2014 ◽  
Vol 955-959 ◽  
pp. 253-256
Author(s):  
Zhe Hua Du ◽  
Xin Lin

The review focuses on the progresses of air microbes in indoor environment, including their sources, sorts, influence of human body health, spread regulation and spatiotemporal distribution characteristics. Most airborne microorganisms attached to the dust particles, which is present in the air in the form of aerosol .The distribution of microbe is related with indoor environment condition in the air. The factor which influences it to distribute mainly includes temperature, degree of humidity, wind velocity and weather condition etc. Air microbe is bred easily in ventilation and air conditioning system. The growth of microbe has a tremendous relation with the ventilation and air condition. The distribution of microorganisms in different regions, different buildings and different ventilation system is different from each other.

2019 ◽  
Vol 8 (2) ◽  
pp. 3155-3161 ◽  

Building retrofit programme has received significant attention in recent years. This article aims to make a contribution towards low cost green retrofit for office application. The retrofit options suggested in this study includes ventilation system, efficient lighting system, potted plants for better indoor air quality and thermal insulation to walls and roof. The detailed analysis of proposed ventilation system is included in the present study. The comparison between proposed ventilation system with existing air conditioning system is also analyzed. The study demonstrates an efficient way towards achieving low cost green retrofit. The outcomes of this case study will increase the confidence among stakeholders in promoting energy conservation and sustainability.


Author(s):  
Seyed Ali Keshavarz ◽  
Mazyar Salmanzadeh ◽  
Goodarz Ahmadi

Recently, attention has been given to indoor air quality due to its serious health concerns. Clearly the dispersion of pollutant is directly affected by the airflow patterns. The airflow in indoor environment is the results of a combination of several factors. In the present study, the effects of thermal plume and respiration on the indoor air quality in a ventilated cubicle were investigated using an unsteady computational modeling approach. The person-to-person contaminant transports in a ventilated room with mixing and displacement ventilation systems were studied. The effects of rotational motion of the heated manikins were also analyzed. Simulation results showed that in the cases which rotational motion was included, the human thermal plume and associated particle transport were significantly distorted. The distortion was more noticeable for the displacement ventilation system. Also it was found that the displacement ventilation system lowered the risk of person-to-person transmission in an office space in comparison with the mixing ventilation system. On the other hand the mixing system was shown to be more effective compared to the displacement ventilation in removing the particles and pollutant that entered the room through the inlet air diffuser.


2015 ◽  
Vol 2 (1) ◽  
pp. 70 ◽  
Author(s):  
Feng-Chyi Duh

This study investigated transient effects on the air quality of parked cars and moving cars with and without operating air conditioning. Carbon dioxide, carbon monoxide, volatile organic compounds, and formaldehyde concentrations were measured for comparative analysis. The results showed that simply changing the air conditioning system from internal circulation to external circulation to introduce air from outside reduces carbon dioxide concentrations by more than 50%, volatile organic compound concentrations by more than 77%, and the heat index from 0.1℃/min to less than 0.05 ℃/min. In order to conserve energy and improve car indoor air quality, this study can serve as a reference on healthy car environments.


2021 ◽  
pp. 1420326X2110395 ◽  
Author(s):  
Carlo Cravero ◽  
Davide Marsano

The COVID-19 infection has emerged as a disruptive pandemic at worldwide level. The study of the mechanism of contagion is one of the greatest challenges before a mass vaccination campaign that would protect populations. The study can support the development of knowledge and tools to develop possible strategies for containing its spread in future events. The saliva droplet aerosol expelled during breathing or coughing is the main cause for the propagation of the SARS-Cov-2. In this work, a URANS CFD approach was used to simulate the dispersion from the mouth of these particles in closed environments. The air conditioning system was considered. The conditions were varied to determine their impact on the diffusion of the aerosol. Lagrangian and Eulerian numerical approaches were used to model the coughing and the breathing events. These were validated with the puff theory, numerical and experimental results. A realistic case of a meeting room with two persons was simulated. Different characteristics of the expulsed aerosols and different ventilation system configurations were considered to demonstrate how these simulations can support management strategies for indoor occupation. Finally, the effect of the protective mask was introduced to quantify its beneficial effects to support safe indoor occupation.


2018 ◽  
Vol 7 (3.5) ◽  
pp. 24 ◽  
Author(s):  
A.M Shmyrin ◽  
N.M Mishachev ◽  
V.V Semina

Considering cement production, we deal with dust, associated with a non-optimal operation of the dust-free ventilation system in the clinker burning department. The optimally organized heating, ventilating, and air conditioning system in any type of production ensures the microclimate of the production premises, corresponding to the sanitary norms and rules, which contribute to the increase of the staff’s efficiency. In this paper, the questions of the neighborhood modeling of the heating, ventilating, and air conditioning system in the premises of the cement production shop are considered. A system for minimizing energy costs and reducing dust emission in the clinker burning shop is proposed, which allows increasing the environmental safety of production. 


2019 ◽  
Vol 111 ◽  
pp. 01085
Author(s):  
Hiroshi Muramatsu ◽  
Tatsuo Nobe

In this study, an office building in Japan that incorporates energy-saving features and environmental technologies was investigated. This office building features a green façade, natural ventilation, a concrete slab with no suspended ceilings, and thermo-active building systems. Two airconditioning systems were installed in this building—a ceiling radiation air-conditioning system and a whole floor-blow off air conditioning system. In addition, a natural ventilation system was installed. We surveyed the heat flux of the ceiling surface and indoor thermal environment of this building from 2015 through 2016. The ceiling using the heat storage amount of concrete maintains a constant temperature in the workplace during as well as after office hours. We also performed detailed measurements of the heat flux of the ceiling surface and indoor thermal environment in the summer of 2017. The results showed that the ceiling radiation air-conditioning system provided a stable thermal environment. Furthermore, we report that making use of the thermal behavior of the skeleton improved the operation of the ceiling radiation airconditioning system.


Sign in / Sign up

Export Citation Format

Share Document