scholarly journals Mutual Effect of Groove Size and Anisotropy of Cylinder Liner Honed Textures on Engine Performances

2014 ◽  
Vol 966-967 ◽  
pp. 175-183 ◽  
Author(s):  
Mohammed Yousfi ◽  
Sabeur Mezghani ◽  
Ibrahim Demirci ◽  
Mohamed El Mansori

The cylinder liner surface texture, widely generated by the honing technique, contributes a lot on engine functional performances (friction, oil consumption, running-in, wear etc.). In order to improve these functional performances, different honing processes are being developed. These different honing processes generate surfaces with various texture features characteristics (roughness, valleys depth, valley width, cross hatch angle, etc.). This paper addresses a comparison of ring-pack friction for cylinder texture with different cross-hatch angles and valley sizes. It takes in consideration the mutual effect of valley depth and honing angle. A numerical model is developed to predict friction within the cylinder ring-pack system in mixed lubrication regime and a morphological method is used to characterize groove depth. The results show the effect of different honing variables (rotation speed, stroke speed and indentation pressure) on cylinder bore surface textures and hydrodynamic friction of the ring-pack system.

Author(s):  
Jeffrey Jocsak ◽  
Yong Li ◽  
Tian Tian ◽  
Victor W. Wong

Frictional losses in the piston ring-pack of an engine account for approximately 20% of the total frictional losses within an engine. Although many non-conventional cylinder liner finishes are now being developed to reduce friction and oil consumption, the effects of the surface finish on ring-pack performance is not well understood. The current study focuses on modeling the effects of three-dimensional cylinder liner surface anisotropy on piston ring-pack performance. A rough surface flow simulation program was developed to generate flow factors and shear stress factors for three-dimensional cylinder liner surface textures. Rough surface contact between the ring and liner was modeled using a previously published methodology for asperity contact pressure estimation between actual rough surfaces. The surface specific flow factors, shear stress factors, and asperity contact model were used in conjunction with MIT’s previously developed ring-pack simulation program to predict the effects of different surface textures on ring-pack behavior. Specific attention was given to the effect of honing groove cross-hatch angle on piston ring-pack friction in a stationary natural gas engine application, and adverse effects on engine oil consumption and durability were also briefly considered. The modeling results suggest that ring-pack friction reduction is possible if the liner honing cross hatch angle is decreased by reducing the feed-to-speed ratio of the honing tool. Reducing the cross-hatch angle increased oil flow blockage and increased the lubricant’s effective viscosity during mixed lubrication. This allowed more load to be supported by hydrodynamic pressure, reducing ring-pack friction. However, there appeared to be a potential for increased oil consumption and scuffing tendency corresponding to a decrease in honing cross-hatch angle.


Author(s):  
Yang Hu ◽  
Xianghui Meng ◽  
Youbai Xie ◽  
Jiazheng Fan

The cylinder liner surface finish, which is commonly produced using the honing technique, is an essential factor of engine performance. The characteristics of the texture features, including the cross-hatch angle, the plateau roughness and the groove depth, significantly affect the performance of the ring pack–cylinder liner system. However, due to the influence of the honed texture features, the surface roughness of the liner is not subject to Gaussian distribution. To simulate the mixed lubrication performance of the ring–liner system with non-Gaussian roughness, the combination of a two-scale homogenization technique and a deterministic asperities contact method is adopted. In this study, a one-dimensional homogenized mixed lubrication model is established to study the influence of groove parameters on the load-carrying capacity and the frictional performance of the piston ring–liner system. The ring profile, plateau roughness, and operating conditions are taken into consideration. The main findings are that for nonflat ring, shallow and wide groove textures are beneficial for friction reduction, and there exists an optimum groove density that makes the friction minimum; for flat ring, wide and sparse grooves help improving the tribological performance, and there exists an optimum groove depth that makes the friction minimum.


2003 ◽  
Vol 125 (4) ◽  
pp. 1081-1089 ◽  
Author(s):  
Y. Piao ◽  
S. D. Gulwadi

The role of cylinder bore shapes in engine performance has been the subject of several studies in recent years. In particular, the influence of bore distortion on oil consumption under high speed conditions has generated significant interest. In this paper, the effect of an axial bore profile on radial dynamics of a ring is investigated. Radial ring motions within grooves due to the axial bore profile can generate significant inertial effects and also have an impact on ring end-gap sizes and lubrication conditions at the ring-liner interfaces. The magnitude of such effects is dependent on the ring-pack configuration, engine operating conditions (speed and load) and axial bore profile details. These issues are investigated in this study due to their implication on engine oil consumption, friction and blow-by. The authors have developed an analytical expression to account for the effects of radial ring inertia due to an axial bore profile for implementation in a piston ring-pack simulation tool RINGPAK. Simulation results from a gasoline engine study are presented to illustrate the effects of engine speeds, ring tensions, and characteristics of axial bore profiles on ring radial dynamics and ring-liner lubrication. Relevant qualitative comparisons are made to experimental measurements available in the literature.


Author(s):  
N Biboulet ◽  
H Bouassida ◽  
J Cavoret ◽  
AA Lubrecht

This paper is part of a project aiming at optimizing the cylinder-liner/piston-ring contact performance: oil consumption, friction and wear. The surface micro-geometry has a major influence on these characteristics. Classical cylinder-liners display cross-hatched patterns. Grooves modify contact pressure distributions and act as lubricant reservoirs and pipes redistributing oil. The load-carrying capacity is greatly influenced by the number of grooves and their geometry. An automatic groove geometry identification (depth, width, angle) is performed on cylinder-liner surface measurements. The surfaces were measured at two instants: new and after a fired engine test. The micro-geometry evolution is discussed.


Author(s):  
Feng Zhu ◽  
Jiujun Xu ◽  
Xiaoguang Han ◽  
Yan Shen ◽  
Mei Jin

Chromium plated cylinder has been wildly used in large bore diesel engines due to its light weight, good durability, and low induced liner wear. Deposits accumulated in the grooves and micro-crack on chromium plated cylinder could smooth the running surface, reduce the oil retention capability, and increase the engine’s oil consumption. In the present research, deposit formation on chromium-plated cylinder in fully formulated oil under different loads and temperatures was investigated by using a reciprocating sliding tester. Surface analytical techniques such as SEM, EDX, and XPS have been used to gain the knowledge about deposits’ origin, distribution, and factors affecting the deposit formation. The deposits are mainly derived from C, O, and S in the lubricating oil and anti-wear additive ZDDP (Zn and P). Deposits only accumulated in the depression (honing grooves and micro-cracks) on chromium plated cylinder surface, and there were no deposits found on the plateaus. The deposit formation increased with the increasing of load and temperature, and increased sharply over 60 MPa and 150℃. The deposit formation on liner surface was significantly different between chromium-plated coating and cast iron in component and distribution.


Author(s):  
C. Anderberg ◽  
S. Johansson ◽  
P. H. Nilsson ◽  
R. Ohlsson ◽  
B. G. Rose´n

Demands for decreased environmental impact from vehicles are resulting in a strong push for decreased engine oil, fuel consumption and weight. New machining and coating technologies have offered ways to attack these problems. Engine oil and fuel consumption are to a great extent controlled by the topography of the cylinder liner surface and it is therefore important to optimise this surface. Recent engine tests have shown a reduction in oil consumption when using cylinder liners with a smoother finish than that given by the current plateau honing. However, engine manufacturers are hesitant to introduce smoother liner surfaces because of fears of severe wear and scuffing. There is also the possibility that smoother liner surfaces may be more sensitive to the choice of piston ring finishes. This paper therefore seeks to investigate the functional performance and resistance to wear of these smooth cylinder liners and the mating top ring surfaces.


Author(s):  
Y. Piao ◽  
S. D. Gulwadi

The role of cylinder bore shapes in engine performance has been the subject of several studies in recent years. In particular, the influence of bore distortion on oil consumption under high speed conditions has generated significant interest. In this paper, the effect of an axial bore profile on radial dynamics of a ring is investigated. Radial ring motions within grooves due to the axial bore profile can generate significant inertial effects and also have an impact on ring end-gap sizes and lubrication conditions at the ring-liner interfaces. The magnitude of such effects is dependent on the ring-pack configuration, engine operating conditions (speed and load) and axial bore profile details. These issues are investigated in this study due to their implication on engine oil consumption, friction and blow-by. The authors have developed an analytical expression to account for the effects of radial ring inertia due to an axial bore profile for implementation in a piston ring–pack simulation tool RINGPAK. Simulation results from a gasoline engine study are presented to illustrate the effects of engine speeds, ring tensions and characteristics of axial bore profiles on ring radial dynamics and ring-liner lubrication. Relevant qualitative comparisons are made to experimental measurements available in the literature.


Author(s):  
K. G. Mahmoud ◽  
O. Knaus ◽  
T. Parikyan ◽  
M. Patete

The automotive industry is subjected to increasing pressure in order to improve fuel efficiency and reduce the CO2 emissions of internal combustion (IC) engines. The power cylinder system (piston, piston ring, and liner) contributes significantly to the friction losses, engine oil consumption and gas leakage called blow-by. The role of cylinder bore shape in engine performance has been the subject of several studies in recent years. High bore distortion must be avoided because it can lead to ring conformability issues, which leads to inadequate sealing resulting in increased blow-by and oil consumption. It also leads to asperity contact between the piston skirt and cylinder bore increasing friction causing abnormally high surface wear. Although bore distortion cannot be eliminated, engine manufacturers strive to contain it within acceptable limits. Therefore, numerical analysis of the power cylinder with physically based mathematical models becomes very essential to the engine and component manufacturer in order to reduce engine development lead time and minimize the number of engine tests. The integrated ring-pack modeling methodology developed by the authors [1] is used to investigate the piston ring-pack performance. Although the modeling approach can be used for extensive parameter analysis of piston, piston rings and lubrication oil consumption, the influence of the bore distortion on the ring conformability and its impact on blow-by, friction and wear is highlighted in this study. Piston tilting, piston ring twist and surface roughness of the piston ring and liner have been taken into consideration.


Author(s):  
Adolfo Senatore ◽  
Vincenzo D’Agostino

An important portion of the total power loss in a modem automotive engine is due to piston ring/cylinder bore friction. This paper introduces the results of simulations about the interaction of a SI engine piston ring taking into account the mixed lubrication regime, the ring flexibility in presence of piston approaching motion to the cylinder liner. The friction force calculations show a visible difference between the ring portion interacting with the two cylinder sides (Thrust and Anti-Thrust) due to specific oil film wedges caused by flexibility and piston lateral motion. The effects of engine speed, radial tension, surface roughness and ring shape are also investigable.


Author(s):  
Staffan Johansson ◽  
Per H. Nilsson ◽  
Robert Ohlsson ◽  
Cecilia Anderberg ◽  
Bengt-Go¨ran Rose´n

A decrease of oil consumption in the modern truck engine would mean decrease of particulate matter and hydrocarbon emissions. This decrease has a positive impact on the environment. One important source of oil consumption is the piston/piston-ring/liner system. One way of decreasing oil consumption is to optimize the surface topography of the liner. In this study different liner surfaces and different piston rings were investigated. The investigation shows that it is possible to decrease both the oil film thickness and the friction without sacrificing wear properties of the piston-liner system. A new surface parameter for quick wear estimation of this system is presented.


Sign in / Sign up

Export Citation Format

Share Document