Structure and Magnetic Properties of Carbon Encapsulated Co Nanoparticles Prepared by the Pyrolysis of Mixture of Sucrose and Cobalt Nitrate

2010 ◽  
Vol 97-101 ◽  
pp. 2201-2204
Author(s):  
Jun Xue ◽  
S.C. Chen ◽  
H.K. Tang ◽  
H.K. Xiang ◽  
X.H. Wang ◽  
...  

Carbon-encapsulated Cobalt nanoparticles were synthesized with sucrose as carbon source and cobalt nitrate as metal source in nitrogen atmosphere. The weight of purified sample could arrive around 12-20 grams at one time. The as-prepared CECNPs sample was characterized by transmission electron microscopy (TEM), X-ray diffraction technique (XRD), vibrating sample magnetometer (VSM) and Raman spectroscopy. The results showed CECNPs was typical core / shell structure on nanometer scale, the core was cobalt single crystal, the shell was graphitic carbon, and the particle size was about 30nm. The magnetic measurement revealed that CECNPs was ferromagnetic material with the quite small remanent magnetizations Mr of 3.7emu/g and coercive forces Hc of 275Oe at room temperature.

2015 ◽  
Vol 33 (1) ◽  
pp. 100-106 ◽  
Author(s):  
Atieh Aliakbari ◽  
Majid Seifi ◽  
Sharareh Mirzaee ◽  
Hoda Hekmatara

AbstractIn the present paper, iron oxide nanoparticles coated by oleic acid have been synthesized in different conditions by coprecipitation method. For investigating the effect of time spent on adding the oleic acid to the precursor solution, two different processes have been considered. The as synthesized samples were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM) and Fourier transform infrared spectroscopy (FT-IR). Magnetic measurement was carried out at room temperature using a vibrating sample magnetometer (VSM). The results show that the magnetic nanoparticles decorated with oleic acid decreased the saturation of magnetization. From the data, it can also be concluded that the magnetization of Fe3O4/oleic acid nanoparticles depends on synthesis conditions.


2005 ◽  
Vol 19 (15n17) ◽  
pp. 2550-2555
Author(s):  
MINGZAI WU ◽  
YING XIONG ◽  
NAN JIANG ◽  
HAI PING QI ◽  
QIANWANG CHEN

Anatase Ti 1-x Co x O 2 nanoparticles were prepared by a hydrothermal process at 180 °C. Ferromagnetic hysteresis loops of the as-prepared samples were measured at room temperature. The Ti 1-x Co x O 2 ( x = 0.0376) powder shows coercivity up to 700 Oe, which is the highest value reported for anatase Ti 1-x Co x O 2. X-ray diffraction (XRD), transmission electron microscopy (TEM) and magnetic measurement results provided evidence that Co was incorporated into TiO 2 lattice. Combined with the fact that the preparation was carried out in an oxidized environment starting from cobalt (II) in the oxidized state, it is suggested that the homogeneous doping of Co into the lattice of anatase should be responsible for the improvement of coercivity in anatase Ti 1-x Co x O 2 nanoparticles.


1997 ◽  
Vol 12 (2) ◽  
pp. 402-406 ◽  
Author(s):  
X. Cao ◽  
R. Prozorov ◽  
Yu. Koltypin ◽  
G. Kataby ◽  
I. Felner ◽  
...  

A method for the preparation of pure amorphous Fe2O3 powder with particle size of 25 nm is reported in this article. Pure amorphous Fe2O3 can be simply synthesized by the sonication of neat Fe(CO)5 or its solution in decalin under an air atmosphere. The Fe2O3 nanoparticles are converted to crystalline Fe3O4 nanoparticles when heated to 420 °C under vacuum or when heated to the same temperature under a nitrogen atmosphere. The crystalline Fe3O4 nanoparticles were characterized by x-ray diffraction and M¨ossbauer spectroscopy. The Fe2O3 amorphous nanoparticles were examined by Transmission Electron Micrography (TEM), Differential Scanning Calorimetry (DSC), Thermogravimetric Analysis (TGA), and Quantum Design SQUID magnetization measurements. The magnetization of pure amorphous Fe2O3 at room temperature is very low (<1.5 emu/g) and it crystallizes at 268 °C.


2013 ◽  
Vol 842 ◽  
pp. 35-38 ◽  
Author(s):  
Li Xia Yang ◽  
Sha Li ◽  
Jing Zhang ◽  
Zhou Chen ◽  
Shi Cheng Xu

MFe2O4 (M=Mn, Co, Ni, Zn) Nanoparticles with diameters from 5nm to 30nm have been prepared through a hydrothermal method. In this system, ethanolamine was used as a basic source instead of NaOH. The as-prepared ferrites were characterized by X-ray diffraction (XRD) and transmission electron microscopy (TEM). In addition, the magnetic properties of the obtained ferrites have been studied at room temperature, showing that the magentic properties of ferrites closely depended on the chemical composition of M2+.


2012 ◽  
Vol 512-515 ◽  
pp. 1511-1515
Author(s):  
Chun Lin Zhao ◽  
Li Xing ◽  
Xiao Hong Liang ◽  
Jun Hui Xiang ◽  
Fu Shi Zhang ◽  
...  

Cadmium sulfide (CdS) nanocrystals (NCs) were self-assembled and in-situ immobilized on the dithiocarbamate (DTCs)-functionalized polyethylene glycol terephthalate (PET) substrates between the organic (carbon disulfide diffused in n-hexane) –aqueous (ethylenediamine and Cd2+ dissolved in water) interface at room temperature. Powder X-ray diffraction measurement revealed the hexagonal structure of CdS nanocrystals. Morphological studies performed by scanning electron microscopy (SEM) and high-resolution transmission electron microscope (HRTEM) showed the island-like structure of CdS nanocrystals on PET substrates, as well as energy-dispersive X-ray spectroscopy (EDS) confirmed the stoichiometries of CdS nanocrystals. The optical properties of DTCs modified CdS nanocrystals were thoroughly investigated by ultraviolet-visible absorption spectroscopy (UV-vis) and fluorescence spectroscopy. The as-prepared DTCs present intrinsic hydrophobicity and strong affinity for CdS nanocrystals.


Nanomaterials ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 1141
Author(s):  
Georgia Basina ◽  
Hafsa Khurshid ◽  
Nikolaos Tzitzios ◽  
George Hadjipanayis ◽  
Vasileios Tzitzios

Fe-based colloids with a core/shell structure consisting of metallic iron and iron oxide were synthesized by a facile hot injection reaction of iron pentacarbonyl in a multi-surfactant mixture. The size of the colloidal particles was affected by the reaction temperature and the results demonstrated that their stability against complete oxidation related to their size. The crystal structure and the morphology were identified by powder X-ray diffraction and transmission electron microscopy, while the magnetic properties were studied at room temperature with a vibrating sample magnetometer. The injection temperature plays a very crucial role and higher temperatures enhance the stability and the resistance against oxidation. For the case of injection at 315 °C, the nanoparticles had around a 10 nm mean diameter and revealed 132 emu/g. Remarkably, a stable dispersion was created due to the colloids’ surface functionalization in a nonpolar solvent.


2010 ◽  
Vol 97-101 ◽  
pp. 4213-4216
Author(s):  
Jian Xiong Liu ◽  
Zheng Yu Wu ◽  
Guo Wen Meng ◽  
Zhao Lin Zhan

Novel single-crystalline SnO2 zigzag nanoribbons have been successfully synthesized by chemical vapour deposition. Sn powder in a ceramic boat covered with Si plates was heated at 1100°C in a flowing argon atmosphere to get deposits on a Si wafers. The main part of deposits is SnO2 zigzag nanoribbons. They were characterized by means of X-ray diffraction (XRD), field-emission scanning electron microscopy (FE-SEM), energy-dispersive X-ray spectroscopy (EDX), transmission electron microscopy (TEM) and selected-area electron diffraction (SAED). SEM observations reveal that the SnO2 zigzag nanoribbons are almost uniform, with lengths near to several hundred micrometers and have a good periodically tuned microstructure as the same zigzag angle and growth directions. Possible growth mechanism of these zigzag nanoribbons was discussed. A room temperature PL spectrum of the zigzag nanoribbons shows three peaks at 373nm, 421nm and 477nm.The novel zigzag microstructures will provide a new candidate for potential application.


2015 ◽  
Vol 815 ◽  
pp. 217-221
Author(s):  
Ling Li Xu ◽  
Xing Ling Shi ◽  
Qing Liang Wang

nanocrystalline cellulose (NCC) was prepared from micro-crystalline cellulose (MCC) by strong acid hydrolysis. The characteristics of such particle were studied by transmission electron microscopy, X-ray diffraction and Fourier transform infrared spectroscopy. Electro-rheological fluids (ERF) were prepared by dispersing NCC and MCC in methyl-silicone oil, and their ER effects were measured. Experimental results indicated that NCC ERF exhibited a remarkable ER effect. The highest static shearing stress of NCC ERF (3.5 g/ml) was 5.1 kPa at the room temperature under a 4 .2 kV/mm electric field, increased about 5.5 times compared to MCC ERF, and sedimentation of NCC ERF was not observed even after 60 days.


2005 ◽  
Vol 20 (3) ◽  
pp. 563-566 ◽  
Author(s):  
Tetsuji Saito ◽  
Hiroyuku Takeishi ◽  
Noboru Nakayama

We report a new compression shearing method for the production of bulk amorphous materials. In this study, amorphous Nd–Fe–B melt-spun ribbons were successfully consolidated into bulk form at room temperature by the compression shearing method. X-ray diffraction and transmission electron microscopy studies revealed that the amorphous structure was well maintained in the bulk materials. The resultant bulk materials exhibited the same magnetic properties as the original amorphous Nd–Fe–B materials.


2007 ◽  
Vol 7 (2) ◽  
pp. 525-529 ◽  
Author(s):  
Bo Zhou ◽  
Jun-Jie Zhu

A chemical co-reduction route in aqueous solution was developed to synthesize Bi100−xSbx alloys at room temperature. The hydrolyses of Bi(III) and Sb(III) were effectively avoided by selecting proper raw materials and coordinator. X-ray diffraction analysis indicated that the as-prepared Bi100−xSbx alloys were homogeneous and phase-pure, and the Bi/Sb ratios in the alloys were very close to those in the aqueous solutions. The transmission electron microscope observation showed that the as-prepared Bi100−xSbx (x = 0∼100) alloys were particles with a size of tens of nanometers. The selected area electron diffraction patterns confirmed the high crystallinity, the homogeneousness, and the composition controllability of as-prepared alloys. All these characters and the nanometer-scaled size of the alloys are believed to be beneficial to the thermoelectric property of the Bi100−xSbx alloys.


Sign in / Sign up

Export Citation Format

Share Document