A New Miniaturized CNC Machine Tool

2010 ◽  
Vol 97-101 ◽  
pp. 3259-3262
Author(s):  
Lin Zhang ◽  
Wen He Liao ◽  
Hui Yang

A miniaturized CNC (Computerized Numerical Control) milling machining equipment was mentioned for micro milling processing. The equipment has a highest spindle speed of 90000rpm and the positioning accuracy of submicron. Furthermore, it described the design of CNC servo system of precision stage driven by linear motor. The servo experiments results verified the excellent static and dynamic performance of the system. The machining tests included a plane with a surface roughness of 215nm using a end milling cutter of Φ0.2μm, micro straight slots with a dimension error range of 1-2μm using a ball-end cutter of Φ0.2μm and some complex structures. The analysis results of these tests show that the system is able to fulfill the micro milling machining of micro components.

2010 ◽  
Vol 97-101 ◽  
pp. 2914-2920 ◽  
Author(s):  
Qin Wu ◽  
Zhi Yuan Rui ◽  
Jian Jun Yang

The computer numerical control (CNC) machine tool was investigated and the dynamics model for the servo feed system was established. Based on the fixing constraint of the ball screw, the mathematical models of axial stiffness and torsion stiffness are constructed. According to the effects of stiffness on the dynamic performance, the simulation model for CNC machine tool feed system with stiffness considered was set up by the dynamic simulation tool Simulink, and a curve representing the performance of the system was obtained. To reduce the effect of stiffness on the system, the feedforward control strategy is used for stiffness compensation. The simulation results show that the stability and response performances of the system are improved and the steady-state error of the system is reduced by the control strategy.


2015 ◽  
Vol 3 (1) ◽  
Author(s):  
Shih-Ming Wang ◽  
Zhe-Zhi Ye ◽  
Chih-Peng Yang ◽  
Chuntai Yen

The products of 3C, bioscience, medical industry, and aerospace industry are becoming smaller and smaller. The components of the products are made of various materials with complex 3D shapes requiring high accuracy in their dimensions and contours. An accurate micro-/mesoscale computer numerical control (CNC) machine tool is an essential part of this technology. A new type of CNC micromachine tool with a togglelike mechanism having the characteristics of low-cost and fine-resolution was developed. With geometric reduction principle, the machine can provide finer feed resolution and better positioning accuracy without using high-end driving components and controller. The kinematics model and characteristics of the machine were derived and analyzed. Modal analysis and dynamic compliance analysis were employed to design a light-weight structure with good stiffness. The accuracy calibration results showed the machine can reach a positioning accuracy of 500 nm. Prototype of the machine was built, and furthermore, some micromachining examples were demonstrated in this paper.


2013 ◽  
Vol 791-793 ◽  
pp. 967-970
Author(s):  
Guo Min Lin ◽  
Miao Shang ◽  
Wen Guang Zhang

CNC machine tool fault types, repair characteristics, the principle to be followed are described. The mechanical systems, Numerical control system, servo system fault diagnosis and repair for CNC machine tools are analyzed in detail. The strategy of the hardware faults such as main spindle part, the ball screw-nut pairs, cutter and tool change device, the strategy of the software repair are proposed.


2015 ◽  
Vol 727-728 ◽  
pp. 354-357
Author(s):  
Mei Xia Yuan ◽  
Xi Bin Wang ◽  
Li Jiao ◽  
Yan Li

Micro-milling orthogonal experiment of micro plane was done in mesoscale. Probability statistics and multiple regression principle were used to establish the surface roughness prediction model about cutting speed, feed rate and cutting depth, and the significant test of regression equation was done. On the basis of successfully building the prediction model of surface roughness, the diagram of surface roughness and cutting parameters was intuitively built, and then the effect of the cutting speed, feed rate and cutting depth on the small structure surface roughness was obtained.


Author(s):  
Xue Zuo ◽  
Hua Zhu ◽  
Yuankai Zhou ◽  
Jianhua Yang

Cutting parameters and material properties have important effects on the quality of milled surface, which can be characterized by fractal dimension and surface roughness. The relationships between two surface parameters (surface roughness and fractal dimension) and material hardness, elongation, spindle speed and feed rate were investigated, respectively, in this study. Four carbon steels, that is, AISI 1020, Gr 50, 1045 and 1566, were milled with five spindle speeds and four feed rates on a computer numerical control machine. The surface topographies were measured with a three-dimensional profiler. The surface profiles were obtained by re-sampling the data points on the surface topography in the measurement direction. The surface roughness and fractal dimension were calculated from the two-dimensional profiles, where the fractal dimension was obtained by the root-mean-square method. The results showed that for specific spindle speed and feed rate, the roughness of the milled surface decreased with the workpiece hardness, whereas the elongation and fractal dimension increased with the hardness. Based on the material hardness and elongation, spindle speed and feed rate, empirical formulae were established to quantitatively estimate the surface roughness and fractal dimension. Moreover, the spindle speed and feed rate can be easily calculated from the empirical formulae to achieve a surface with the desired surface roughness and fractal dimension. The empirical formulae have been demonstrated with the experiments and were shown to be applicable in estimating the surface roughness and fractal dimension for all carbon steels in end milling. The results are instructive for the fractal dimension estimation of the machined surfaces of carbon steel, which has not been previously studied.


2004 ◽  
Vol 471-472 ◽  
pp. 603-607 ◽  
Author(s):  
Q. Zhang ◽  
S.J. Liu ◽  
C.Y. Duan ◽  
Y.M. Zhu

Based on the functional requirement analysis of the compute-aided reliability information system, some concepts are proposed, such as the distributed progressive reliability analysis and the functional decomposition and reconstitution for CNC machine tool. At the same time, the architecture of the CARNC-CE (Computer Aided Reliability Numerical Control for Current Engineering) including physical layer, foundational layer, executive layer, applied layer and illustration layer, is introduced, which provides the general guidance and the frame to realize CNC machine tool reliability analysis system in concurrent engineering.


BioResources ◽  
2021 ◽  
Vol 16 (3) ◽  
pp. 5133-5147
Author(s):  
Hüseyin Pelit ◽  
Mustafa Korkmaz ◽  
Mehmet Budakçı

The effects of different machining parameters on surface roughness values of thermally treated pine, beech, and linden woods cut in a computer numerical control (CNC) router machine were examined. Wood specimens were thermally treated at 170, 190, and 210 °C for 2 h. Then, specimens were cut in the radial and tangential directions with three different spindle speeds (12000, 15000, and 18000 rpm) and three different feed rates (3000, 4000, and 6000 mm/min) using two different end mill tools (spiral and straight) on the CNC machine. The end mill type significantly affected the roughness values of the untreated and thermally treated specimens in both directions. Lower roughness values were found in the specimens (especially pine) machined with the straight end mill compared to those machined with the spiral end mill. Roughness generally decreased in the thermally treated specimens. However, thermal treatment temperature did not have a notable effect on roughness. As the spindle speed increased, the roughness values of all specimens decreased. In contrast, as the feed rate increased, the roughness values increased. Therefore, the end mill type, feed rate, and spindle speed were the most influential parameters on the roughness.


2011 ◽  
Vol 10 (01) ◽  
pp. 77-84 ◽  
Author(s):  
BAOSHENG WANG ◽  
JIANMIN ZUO ◽  
MULAN WANG

Based on the elastic mechanics theory, the mathematical models of axial stiffness and torsion stiffness are constructed in accordance with single end thrust and two ends thrust. The effects of stiffness on dead band error are analyzed. With the analysis of displacement deviation induced by axial stiffness and angular displacement deflection caused by torsion stiffness, a formula to calculate the dead band error is presented. A model for Computer Numerical Control (CNC) machine tool feed system with stiffness is established. By applying computer simulation, dynamic performances, static performances and steady-state error of the system are analyzed. To reduce the effect of stiffness on the system, the feedforward control method is used to compensate stiffness. The simulation analysis shows the result that dynamic and static performances are improved, as well as steady-state error of the system is reduced by more than 58% with this approach.


Sign in / Sign up

Export Citation Format

Share Document