A Prediction Model of Surface Roughness in Micro End Milling

2015 ◽  
Vol 727-728 ◽  
pp. 354-357
Author(s):  
Mei Xia Yuan ◽  
Xi Bin Wang ◽  
Li Jiao ◽  
Yan Li

Micro-milling orthogonal experiment of micro plane was done in mesoscale. Probability statistics and multiple regression principle were used to establish the surface roughness prediction model about cutting speed, feed rate and cutting depth, and the significant test of regression equation was done. On the basis of successfully building the prediction model of surface roughness, the diagram of surface roughness and cutting parameters was intuitively built, and then the effect of the cutting speed, feed rate and cutting depth on the small structure surface roughness was obtained.

2011 ◽  
Vol 228-229 ◽  
pp. 458-463
Author(s):  
Ming Hai Wang ◽  
Hu Jun Wang ◽  
Zhong Hai Liu

Isotropic pyrolyric graphite (IPG) is a new kind of brittle material, it not only has the general advantages of ordinal carbonaceous materials such as high temperature resistance, lubrication and abrasion resistance, but also has the advantages of impermeability and machinability that carbon/carbon composite doesn’t have. So it can be used for sealing the aeronautics and astronautics engines turbine shaft and the ethylene high-temperature equipment. The mechanism of this material removal during the precision cutting was analyzed by using the theory of strain gradient. The critical cutting thickness of IPG was calculated for the first time. Furthermore, the cutting process parameters such as cutting depth and feed rate which corresponding to the scale of brittle-ductile transition deformation of IPG was calculated. The prediction model of surface roughness in precision cutting of IPG was developed based on the Genetic algorithm. Using the surface roughness prediction model, the study investigates the influence of the cutting speed, the feed rate and the cutting depth on surface roughness in precision turning process was researched.


Author(s):  
Xiao-fen Liu ◽  
Wen-hu Wang ◽  
Rui-song Jiang ◽  
Yi-feng Xiong ◽  
Kun-yang Lin ◽  
...  

Abstract The current state of surface roughness focuses on the 2D roughness. However, there are shortcomings in evaluating surface quality of particle reinforced metal matrix composites using 2D roughness due to the fact that the measuring direction has a vital impact on the 2D roughness value. It is therefore of great importance and significance to develop a proper criterion for measuring and evaluating the surface roughness of cutting particle reinforced metal matrix composites. In this paper, an experimental investigation was performed on the effect of cutting parameters on the surface roughness in cutting in-situ TiB2/7050Al MMCs. The 2D roughness Ra, 3D roughness Sa and Sq were comparatively studied for evaluating the machined surface quality of in-situ TiB2/7050Al MMCs. The influence of cutting parameters on the surface roughness was also analyzed. The big difference between roughness Ra measured along cutting and feed directions showed the great impact of measuring direction. Besides, surface defects such as pits, grooves, protuberances and voids were observed, which would influence 2D roughness value greatly, indicating that 3D roughness was more suitable for evaluating surface quality of cutting in-situ TiB2/7050Al MMCs. The cutting depth and feed rate were found to have the highest influence on 3D roughness while the effect of cutting speed was minimal. With increasing feed rate, cutting depth or width, the 3D roughness increased accordingly. But it decreased as cutting speed increased.


2012 ◽  
Vol 500 ◽  
pp. 357-362 ◽  
Author(s):  
Xiu Bing Jing ◽  
Huai Zhong Li ◽  
Jun Wang ◽  
Jong Leng Liow

Micro-end-milling is an efficient and economical manufacturing operation that is capable of accurately producing high aspect ratio features and parts. It is important to study the cutting forces in micro-milling for the planning and control of the process. This paper presents an experimental study of the cutting forces in micro-end-milling of a 6160 aluminum alloy. The measured cutting forces are presented and discussed for different cutting conditions, such as various feeds per tooth, cutter diameters, and cutting speeds. It is found that the peak cutting forces increase with increasing cutting speed and feed rate. The effects of tool runout on the cutting forces were also analyzed based on the experimental results, from which the influences of feed rate and cutting speed are found to be obvious.


2019 ◽  
Vol 1 (1) ◽  
Author(s):  
Qi Gao ◽  
Po Jin ◽  
Guangyan Guo

Micro milling is a machining method of high precision and efficiency for micro components and features. In order to study the surface quality of single crystal materials in micro milling, the two-edged cemented carbide tool milling cutter with 0.4 mm diameter was used, and the orthogonal experiment was completed on the micro-milling of single crystal aluminum material. Through the analysis of statistical results, the primary and secondary factor which impacting on surface quality were found as follows: spindle speed, feed rate, milling depth. The ideal combination of optimized process parameters were obtained, when the spindle speed was 36000 r/min, the milling depth was 10 μm, the feed rate was 80 μm/s, which made the milling surface roughness is 0.782 μm and minimal. Single crystal materials removal mechanism were revealed, and the influence of cutting parameters on micro-milling surface were discussed, the reason of tool wear was analyzed. Those provide a certain theoretical and experimental basis for micro milling of single crystal materials.


2013 ◽  
Vol 747 ◽  
pp. 282-286 ◽  
Author(s):  
Moola Mohan Reddy ◽  
Alexander Gorin ◽  
K.A. Abou-El-Hossein ◽  
D. Sujan

This research presents the performance of Aluminum Nitride ceramic in end milling using two flute square end micro grain solid carbide end mill under dry cutting. Surface finish is one of the important requirements in the machining process. This paper describes mathematically the effect of cutting parameters on surface roughness in end milling process. The quadratic model for the surface roughness has been developed in terms of cutting speed, feed rate, and axial depth of cut using the response surface methodology (RSM). Design of experiments approach was employed in developing the surface roughness model in relation to cutting parameters. The predicted results are in good agreement with the experimental results within the specified range of cutting conditions. Experimental results showed surface roughness increases with increase in the cutting speed, feed rate, and the axial depth of cut.


2013 ◽  
Vol 773-774 ◽  
pp. 429-436 ◽  
Author(s):  
Siti Haryani Tomadi ◽  
Jaharah A. Ghani ◽  
Che Hassan Che Haron ◽  
Abdul Razak Daud

In this paper, the optimization of cutting parameters is investigated to assess surface roughness and cutting force in the end milling of AlSi/AlN metal matrix composite. Eighteen experiments (L18) with five factors (cutting speed, feed rate, depth of cut, volume of particle reinforcement, and type of coated insert) were performed based on Taguchi designs of the experiment method. Two types of coating (TiB2 and TiN/TiCN/TiN) of the carbide cutting tool were employed to machine various volumes of AlN particle (5%, 7% and 10%) reinforced AlSi alloy matrix composite under dry cutting conditions. Signal-to-noise (S/N) ratio and analysis of variance (ANOVA) were applied to investigate the optimum cutting parameters and their significance. The S/N analysis of the obtained results showed that the optimum cutting conditions for the cutting force were; A2 (triple coating of the insert), B2 (cutting speed: 200m/min), C1 (feed rate: 0.6mm/tooth), D1 (axial depth: 0.6mm) and E1 (5% reinforcement). At the mean time, the optimum cutting conditions for surface roughness were; A1 (single coating of insert), B3 (cutting speed: 250m/min), C2 (feed rate: 0.75mm/tooth), D1 (axial depth: 0.6mm) and E1 (5% reinforcement).The study confirmed that, with a minimum number of experiments, the Taguchi method is capable of determining the optimum cutting conditions for the cutting force and surface roughness for this new material under investigation.


2018 ◽  
Vol 2018 ◽  
pp. 1-15 ◽  
Author(s):  
Maohua Xiao ◽  
Xiaojie Shen ◽  
You Ma ◽  
Fei Yang ◽  
Nong Gao ◽  
...  

The turning test of stainless steel was carried out by using the central composite surface design of response surface method (RSM) and Taguchi design method of central combination design. The influence of cutting parameters (cutting speed, feed rate, and cutting depth) on the surface roughness was analyzed. The surface roughness prediction model was established based on the second-order RSM. According to the test results, the regression coefficient was estimated by the least square method, and the regression equation was curve fitted. Meanwhile, the significance analysis was conducted to test the fitting degree and response surface design and analysis, in addition to establishing a response surface map and three-dimensional surface map. The life of the machining tool was analyzed based on the optimized parameters. The results show that the influence of feed rate on the surface roughness is very significant. Cutting depth is the second, and the influence of cutting speed is the least. Therefore, the cutting parameters are optimized and tool life is analyzed to realize the efficient and economical cutting of difficult-to-process materials under the premise of ensuring the processing quality.


2010 ◽  
Vol 447-448 ◽  
pp. 51-54
Author(s):  
Mohd Fazuri Abdullah ◽  
Muhammad Ilman Hakimi Chua Abdullah ◽  
Abu Bakar Sulong ◽  
Jaharah A. Ghani

The effects of different cutting parameters, insert nose radius, cutting speed and feed rates on the surface quality of the stainless steel to be use in medical application. Stainless steel AISI 316 had been machined with three different nose radiuses (0.4 mm 0.8 mm, and 1.2mm), three different cutting speeds (100, 130, 170 m/min) and feed rates (0.1, 0.125, 0.16 mm/rev) while depth of cut keep constant at (0.4 mm). It is seen that the insert nose radius, feed rates, and cutting speed have different effect on the surface roughness. The minimum average surface roughness (0.225µm) has been measured using the nose radius insert (1.2 mm) at lowest feed rate (0.1 mm/rev). The highest surface roughness (1.838µm) has been measured with nose radius insert (0.4 mm) at highest feed rate (0.16 mm/rev). The analysis of ANOVA showed the cutting speed is not dominant in processing for the fine surface finish compared with feed rate and nose radius. Conclusion, surface roughness is decreasing with decreasing of the feed rate. High nose radius produce better surface finish than small nose radius because of the maximum uncut chip thickness decreases with increase of nose radius.


2014 ◽  
Vol 800-801 ◽  
pp. 237-240
Author(s):  
Li Fu Xu ◽  
Ze Liang Wang ◽  
Shu Tao Huang ◽  
Bao Lin Dai

In this paper, the cutting experiment was used to study the influence of various cutting parameters on cutting force when rough turning titanium alloy (TC4) with the whole CBN tool. The results indicate that among the cutting speed, feed rate and cutting depth, the influence of the cutting depth is the most significant on cutting force; the next is the feed rate and the cutting speed is at least.


2015 ◽  
Vol 1115 ◽  
pp. 12-15
Author(s):  
Nur Atiqah ◽  
Mohammad Yeakub Ali ◽  
Abdul Rahman Mohamed ◽  
Md. Sazzad Hossein Chowdhury

Micro end milling is one of the most important micromachining process and widely used for producing miniaturized components with high accuracy and surface finish. This paper present the influence of three micro end milling process parameters; spindle speed, feed rate, and depth of cut on surface roughness (Ra) and material removal rate (MRR). The machining was performed using multi-process micro machine tools (DT-110 Mikrotools Inc., Singapore) with poly methyl methacrylate (PMMA) as the workpiece and tungsten carbide as its tool. To develop the mathematical model for the responses in high speed micro end milling machining, Taguchi design has been used to design the experiment by using the orthogonal array of three levels L18 (21×37). The developed models were used for multiple response optimizations by desirability function approach to obtain minimum Ra and maximum MRR. The optimized values of Ra and MRR were 128.24 nm, and 0.0463 mg/min, respectively obtained at spindle speed of 30000 rpm, feed rate of 2.65 mm/min, and depth of cut of 40 μm. The analysis of variance revealed that spindle speeds are the most influential parameters on Ra. The optimization of MRR is mostly influence by feed rate. Keywords:Micromilling,surfaceroughness,MRR,PMMA


Sign in / Sign up

Export Citation Format

Share Document