Development of Rapid Tooling Using Fused Deposition Modeling

Author(s):  
Kamaljit Singh Boparai ◽  
Rupinder Singh
2014 ◽  
Vol 970 ◽  
pp. 155-165 ◽  
Author(s):  
Sambasiva Rao Addanki ◽  
Medha A. Dharap ◽  
Jonnalagedda V.L. Venkatesh

Fused Deposition Modeling (FDM) process can be used to produce the rapid tooling directly or indirectly. However, rapid tooling application demands good surface finish since the poor surface finish of FDM parts has become a limitation for its tool application. So there is need to improve the surface finish of FDM made tools. In this study, surface roughness of FDM tools are drastically reduced by a post processing technique called chemical treatment process. Surface finish was improved by filling the gap between layers by diffusion of parent material. Thus FDM made tools can be used as direct as well as indirect tools after the chemical treatment. Comparative study was made between Silicon Rubber Moulding and FDM Tooling towards the cost, time, life of mould, quality and feasibility aspects. It was found that FDM tooling is more economical, easy to use, reduced cycle time, improved quality, long life of mould and more feasibility towards complex parts etc.


2014 ◽  
Vol 808 ◽  
pp. 103-108 ◽  
Author(s):  
Harish Kumar Garg ◽  
Rupinder Singh

The impact of Rapid Prototyping (RP) on the future engineering and manufacturing will undoubtedly be widespread .It has variety of applications which include the manufacture of prototypes know as rapid prototyping, tool cores and cavities know as rapid tooling and in the manufacture of patterns for a range of casting processes known as rapid casting. In the proposed research work, fused deposition modeling (FDM) technique of RP will be used for development of a tool for direct application using Rapid tooling. The research work includes development of new hybrid feedstock filament of Fe – Nylon6 composite material for the FDM machine which will be suitable for the machine in its existing setup. The feedstock filament will have the desired mechanical thermal and rheological properties as desired for Rapid Tooling applications. The proposed feedstock material will be ferromagnetic in nature and can find wide application in industrial applications.


Author(s):  
Kamaljit Singh Boparai ◽  
Rupinder Singh

This work is focused on the experimental investigations for wear properties of rapid tooling with nano scale fillers for grinding applications. The rapid tooling has been prepared by using composite material feed stock filament (consisting of Nylon6 as a binder, reinforced with biocompatible nano scaled Al2O3 particles on fused deposition modeling (FDM) for the development of grinding wheel having customized wear resistant properties. A comparative study has been conducted under dry sliding conditions in order to understand the tribological characteristics of FDM prints of composite material and commercially used acrylonitrile butadiene styrene (ABS) material. This study also highlights the various wear mechanisms (such as adhesive, fatigue and abrasive) encountered with newly prepared composite material while grinding. The FDM printed parts of proposed composite material feedstock filament are more suitable for grinding applications especially in clinical dentistry.


2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Turki Alamro ◽  
Mohammed Yunus ◽  
Rami Alfattani ◽  
Ibrahim A. Alnaser

The role of rapid tooling (RT) in additive manufacturing (AM) seems essential in improving and spreading out the vista of manufacturing proficiency. In this article, attempts were made to discover the feasibility and the accomplishments of the RT electrode in the field of electro-discharge machining (EDM). Fused deposition modeling (FDM) is one of the AM processes adopted to fabricate the EDM electrode prototype by coating with copper. The copper is deposited on FDM-built ABS plastic component for about 1 mm through thick electroplating. The copper-coated FDM (CCF) and solid copper (SC) electrodes are used to conduct experiments on a die-sinking EDM machine using tool alloy steel as a workpiece. The CCF polymer electrode can be efficiently used in EDM operations as the build time of any complex shape was substantially reduced. However, the material removal rate (MRR) is far less than that of the SC electrode. It is recommended that the CCF electrode is used for semifinishing and finishing operations in which MRR happens to be less. However, CCF can get spoiled as high temperatures are generated on the machining tool, and the plastic core hardly sustains such high temperatures.


2018 ◽  
Vol 33 (5) ◽  
pp. 581-598 ◽  
Author(s):  
Piyush Bedi ◽  
Rupinder Singh ◽  
IPS Ahuja

In this work, multifactor optimization of fused deposition modeling (FDM) process parameters has been reported for in-house prepared feedstock filament comprising of SiC/Al2O3 reinforced in recycled low-density polyethylene (LDPE) matrix with different particle sizes (i.e. single particle size (SPS), double particle size (DPS), and triple particle size (TPS) in different proportions). This study has been conducted on Al2O3-based DPS reinforcement in LDPE, which came out as a better solution during pilot experimentation in comparison to SPS, TPS, and SiC reinforcement, for printing of functional prototypes as rapid tooling (RT). The result of study suggests that infill angle in the FDM process is the most significant process parameter (contributing around 93%) for preparation of RT as regards dimensional accuracy and hardness is concerned. The RT so prepared is thermally stable as evident from differential scanning calorimetry analysis. Further, the photomicrographs observed in different planes suggest that, at the proposed settings, RT has a uniform distribution of reinforcement in LDPE matrix and can be gainfully used in light machining applications.


2018 ◽  
Vol 6 (2) ◽  
Author(s):  
Kamaljit Singh Boparai ◽  
Rupinder Singh

In this work, investigations were made for enhancing wear properties of rapid tooling (RT) by reinforcement of fillers (nanoscaled) for grinding applications. The RT has been prepared by using biocompatible composite material (BCCM) feed stock filament (consisting of Nylon 6 as a binder, reinforced with biocompatible nanoscale Al2O3 particles) on fused deposition modeling (FDM) for the development of grinding wheel having customized wear-resistant properties. A comparative study has been conducted under dry sliding conditions in order to understand the tribological characteristics of FDM printed RT of BCCM and commercially used acrylonitrile butadiene styrene (ABS) material. This study also highlights the various wear mechanisms (such as adhesive, fatigue, and abrasive) encountered during experimentation. Finally, the FDM printed RT of proposed BCCM feedstock filament is more suitable for grinding applications especially in clinical dentistry.


2013 ◽  
Vol 664 ◽  
pp. 830-834
Author(s):  
Chil Chyuan Kuo ◽  
Sheng Jie Su ◽  
Shiou Ru Shiu

The surface finish of fused deposition modeling (FDM) processed part is excessively rough due to stair stepping effect. In addition, the tensile strength of rapid tooling fabricated by FDM is inferior to that fabricated by plastic injection molding. A hybrid rapid tooling technology is developed to improve the surface roughness and increase the tensile strength of rapid tooling fabricated by FDM using epoxy-based composite in this work. Improvement rate of tensile strength of rapid tooling is 2.34 times of the add rate of epoxy-based composite. Surface roughness improvement rate of up to 92.94% can be achieved. Hybrid rapid tooling technology owns low manufacturing cost, simple manufacturing process and good flexibility.


2005 ◽  
Vol 475-479 ◽  
pp. 2873-2876
Author(s):  
Charles Martin ◽  
J.V. Sasutil ◽  
M. Kouhkan ◽  
E. Lorea ◽  
Rafiq Noorani

The purpose of this experiment was to compare different techniques that help improve conventional tooling. The methods investigated were chosen from both the methods of Rapid Tooling: direct and indirect. Six different methods were selected including, Sand Casting, Investment Casting, Fused Deposition Modeling (FDM), Direct Composite Manufacturing (DCM), Selective Laser Sintering (SLS), and Stereolithography (SLA). Several industrial corporations were contacted to help complete all six tests. Five parameters were selected for the comparison of these samples: dimensional accuracy, tensile strength, surface roughness, time for completion, and weight. Through comparison the strengths and weaknesses of each method was determined. It was found that different methods did better in various parameters. However, Selective Laser Sintering (SLS) seemed to have the best overall performance.


Author(s):  
Michael A. Luzuriaga ◽  
Danielle R. Berry ◽  
John C. Reagan ◽  
Ronald A. Smaldone ◽  
Jeremiah J. Gassensmith

Biodegradable polymer microneedle (MN) arrays are an emerging class of transdermal drug delivery devices that promise a painless and sanitary alternative to syringes; however, prototyping bespoke needle architectures is expensive and requires production of new master templates. Here, we present a new microfabrication technique for MNs using fused deposition modeling (FDM) 3D printing using polylactic acid, an FDA approved, renewable, biodegradable, thermoplastic material. We show how this natural degradability can be exploited to overcome a key challenge of FDM 3D printing, in particular the low resolution of these printers. We improved the feature size of the printed parts significantly by developing a post fabrication chemical etching protocol, which allowed us to access tip sizes as small as 1 μm. With 3D modeling software, various MN shapes were designed and printed rapidly with custom needle density, length, and shape. Scanning electron microscopy confirmed that our method resulted in needle tip sizes in the range of 1 – 55 µm, which could successfully penetrate and break off into porcine skin. We have also shown that these MNs have comparable mechanical strengths to currently fabricated MNs and we further demonstrated how the swellability of PLA can be exploited to load small molecule drugs and how its degradability in skin can release those small molecules over time.


Sign in / Sign up

Export Citation Format

Share Document