Study on Region Energy Allocation under Carbon Emission Constraints: Base on Analysis of Carbon Pinch

2014 ◽  
Vol 977 ◽  
pp. 149-154
Author(s):  
Hong Yu ◽  
Jun Feng Wang ◽  
Lei Hu

Energy Supply and demand, and carbon emission constraints are the problems that must be considered in the process of rapid economic development by national and every province. Under the constraints of energy supply and demand, and carbon emissions, there has practical significance to rational allocate regional energy utilization. With carbon pinch method, this paper research the energy allocation of Tianjin, establish analysis model. Considering the overall and regional energy demand and carbon emission constraints, to determine the usage amount of every kind of fossil energy and clean energy, in order to achieve the best energy structure and optimal balance between energy supply and demand. To provide scientific evidence for local government to make reasonable energy supply and carbon emission constraint index.

2021 ◽  
Vol 336 ◽  
pp. 05026
Author(s):  
Tiecheng Li ◽  
Siming Zeng ◽  
Zhengfu Yang ◽  
Zhibin Liu ◽  
Yajing Liu

Under the background of increasing energy demand, integrated energy system is an important way to promote the development of clean energy, support the efficient use of energy and energy saving and emission reduction. This paper firstly establishes a comprehensive energy system evaluation index model composed of three sub-models of economy, environment and energy. On the basis of this model, a comprehensive energy multi-objective optimization mathematical model with the lowest total cost, excellent environmental benefits and high comprehensive energy utilization efficiency is established, and the energy supply and demand allocation optimization method based on improved genetic algorithm is adopted for solution. The simulation proves the effectiveness of the proposed optimization model.


2021 ◽  
pp. 1-18
Author(s):  
Jiahang Yuan ◽  
Yun Li ◽  
Xinggang Luo ◽  
Lingfei Li ◽  
Zhongliang Zhang ◽  
...  

Regional integrated energy system (RIES) provides a platform for coupling utilization of multi-energy and makes various energy demand from client possible. The suitable RIES composition scheme will upgrade energy structure and improve integrated energy utilization efficiency. Based on a RIES construction project in Jiangsu province, this paper proposes a new multi criteria decision-making (MCDM) method for the selection of RIES schemes. Because that subjective evaluation on RIES schemes benefit under criteria has uncertainty and hesitancy, intuitionistic trapezoidal fuzzy number (ITFN) which has the better capability to model ill-known quantities is presented. In consideration of risk attitude and interdependency of criteria, a new decision model with risk coefficients, Mahalanobis-Taguchi system and Choquet integral is proposed. Firstly, the decision matrices given by experts are normalized, and then are transformed to minimum expectation matrices according to different risk coefficients. Secondly, the weights of criteria from different experts are calculated by Mahalanobis-Taguchi system. Mobius transformation coefficients based on interaction degree are to calculate 2-order additive fuzzy measures, and then the comprehensive weights of criteria are obtained by fuzzy measures and Choquet integral. Thirdly, based on group decision consensus requirement, the weights of experts are obtained by the maximum entropy and grey correlation. Fourthly, the minimum expectation matrices are aggregated by the intuitionistic trapezoidal fuzzy Bonferroni mean operator. Thus, the ranking result according to the comparison rules using the minimum expectation and the maximum expectation is obtained. Finally, an illustrative example is taken in the present study to make the proposed method comprehensible.


2012 ◽  
Vol 524-527 ◽  
pp. 2474-2481
Author(s):  
Zhi Gang Huang ◽  
Jiao Ling Xie ◽  
Wen Ping Wu

Carbon emissions permits has its own particularity,and with the development of carbon finance,carbon emissions permits possess the commodity attributes and financial attributes.So its price isn’t determined only by the relationship of commodity supply and demand,but also affected by a variety of factors.But because the transaction data is not available,so the pricing of the carbon emissions permits can not really consider from the angle of the influencing factors of price.Therefore, this paper is on the basis of previous studies using mathematical tools and introducing the option pricing mechanism to study th pricing of China's carbon emissions permits basing on carbon emissions,which is designed for providing reference on the pricing of China's carbon emissions,being of both theoretical and practical significance.


2013 ◽  
Vol 448-453 ◽  
pp. 4281-4284 ◽  
Author(s):  
Shao Bo Liu

Using IPCC methodology, the carbon emissions of Chinese Northeast Old Industrial Base is calculated, and the energy's synthesized impact on carbon emissions intensity is presented. The resulting shows that the carbon emissions in the three northeast provinces decreased 52.87% from 2000 to 2010, of which, Liaoning, Jilin and Heilongjiang are individually 60.09%, 45.47% and 54.14% lower. The implications are that the energy structure is one of the main factors in carbon emission in the Old Industrial Base of Northeast China, and its industrial structure is changing greatly due to energy consumption carbon emission. To adjust optimally the energy and industrial structure, and to develop the energy technology to promote energy utilization are recommended.


2020 ◽  
Vol 12 (24) ◽  
pp. 10432
Author(s):  
Qingwei Shi ◽  
Hong Ren ◽  
Weiguang Cai ◽  
Jingxin Gao

The improvement of the energy and carbon emission efficiency of activities in the building sector is the key to China’s realization of the Paris Agreement. We can explore effective emission abatement approaches for the building sector by evaluating the carbon emissions and energy efficiency of construction activities, measuring the emission abatement potential of construction activities across the country and regions, and measuring the marginal abatement cost (MAC) of China and various regions. This study calculates the energy and carbon emissions performance of the building sector of 30 provinces and regions in China from 2005 to 2015, measures the dynamic changes in the energy-saving potential and carbon emission performance of the building sector, conducts relevant verification, and estimates the MAC of the building sector by using the slacks-based measure-directional distance function. The level of energy consumption per unit of the building sector of China has been decreasing yearly, but the energy structure has changed minimally (considering that clean energy is used). The total factor technical efficiency of the building sector of various provinces, cities, and regions is generally low, as verified in the evaluation of the energy-saving and emission abatement potential of the building sector of China. The energy saving and emission abatement of the building sector of China have great potential—that is, in approximately 50% of the total emissions of the building sector of China. In particular, Northeast and North China account for more than 50% of the total energy-saving and emission abatement potential. The study of the CO2 emissions and MAC of the building sector indicates that the larger the CO2 emissions are, the smaller MAC will be. The emission abatement efficiency is proportional to MAC. Based on this research, it can be more equitable and effective in formulating provincial emission reduction policy targets at the national level, and can maximize the contribution of the building sector of various provinces to the national carbon emission reduction.


2007 ◽  
pp. 104-122 ◽  
Author(s):  
I. Bashmakov

The paper presents a vision of Russian energy future before 2020. The scenario approach is required to identify potential energy supply and demand future trajectories for Russia facing uncertainties of both global energy system evolution and domestic demographic and economic development in 2007-2020. It allows for assessing energy demand by sectors under different investment, technological and energy pricing policies favoring the least cost balancing of energy supply options and energy efficiency improvements to sustain dynamic economic growth. The given approach provides grounds for evaluation of different energy policies effectiveness. Three scenarios - "Inertia Strategy", "Energy Centrism", and "Efficiency Strategy - Four I" - integral-innovative-intellectual-individual oriented energy systems - are considered in the paper. It shows that ignorance of the last scenario escalates either energy shortages in the country or Russian economy overloading with energy supply investments both preventing from sustaining rates of economic growth which have recently been demonstrated by Russia.


2012 ◽  
Vol 512-515 ◽  
pp. 361-365
Author(s):  
Yong Wei

The development of biomass energy industry carries a great significance to alleviating the shortage of fossil energy supply, to optimizing energy structure, safeguarding national energy security, and establishing stable energy supply system. In this paper, the writer introduces basic situation and characteristics of biomass energy, then current situation of biomass energy utilization in our country is summarized, and the development prospect and significance of biomass energy are analyzed at last.


2013 ◽  
Vol 760-762 ◽  
pp. 652-655
Author(s):  
Zhong Wei Sun

Demand response entails the control of the energy demand and loads during critical peak situations to achieve a balance between electrical energy supply and demand. A robust communication infrastructure, which consists of network components of Home Area Networks (HANs) and Neighborhood Area Networks (NANs) is the touchstone to achieve the demand response goals. This paper surveys existing communication technologies that can be adopted for demand response applications. A heterogeneous communication architecture based on Wireless Sensor Networks (WSNs) and Ethernet Passive Optical Networks (EPONs) is presented, and the reliability and scalability requirements of communication system is satisfied.


2021 ◽  
Vol 8 ◽  
Author(s):  
Aminu Ali ◽  
Monday Usman ◽  
Ojonugwa Usman ◽  
Samuel Asumadu Sarkodie

In this paper, we modeled the effects of income, agricultural innovation, energy utilization, and biocapacity on Carbon dioxide (CO2) emissions. We tested the validity of the environmental Kuznets curve (EKC) hypothesis for Nigeria from 1981 to 2014. We applied the novel dynamic autoregressive distributed lag (ARDL) simulations to develop conceptual tools for policy formulation. The empirical results confirmed the EKC hypothesis and found that agricultural innovation and energy utilization have an escalation effect on CO2 emissions whereas income and biocapacity have long-run emission-reduction effects. The causality results found agricultural innovation attributable to CO2 emissions and observed that income drives energy demand. Income, biocapacity, and energy utilization are found to predict changes in CO2 emissions. These results are validated by the innovation accounting techniques—wherein 22.79% of agricultural innovation corresponds to 49.43% CO2 emissions—5.95% of biocapacity has 35.78% attributable CO2 emissions—and 1.61% of energy spurs CO2 emissions by 16.27%. The policy implication for this study is that energy efficiency, clean energy utilization and sustainable ecosystem recovery and management are the surest ways to combat climate change and its impacts.


Sign in / Sign up

Export Citation Format

Share Document