Analytic Study of Structural Stability at High Temperature of Structural Beam Made of SM 400

2014 ◽  
Vol 977 ◽  
pp. 378-381
Author(s):  
In Kyu Kwon

A fire occurred in the steel framed building could be yielded an unexpected disasters including loss of human lives and damages of properties. Therefore, to evade the tragedies from the building, fire resistance performance of structural elements is required and specified into each nation’s building regulation. Especially, the structural beam plays a key role to transfer the load applied on the floor to column. In this study, to estimate the fire resistance performance of structural beam made of SM 400, analysis using not only mechanical, thermal properties at high temperature of the SM 400 but theories of heat transfer and thermal stress were conducted. The result of this study showed that as the lengths of beam are increased, the structural stability become getting worse. Therefore, it is not recommended to use the same thickness of fire protective materials derived from prototype’s length, 4100 mm to longer beam.

2014 ◽  
Vol 501-504 ◽  
pp. 653-656
Author(s):  
In Kyu Kwon

Structural columns are very important members in steel buildings. An evaluation of fire resistance performance of the column is essential to sustain the structural stability in a fire situation. However, the length of columns is dependent on various architectural design variations. Therefore, the fire resistance can be different according to the length of column. In this study, to suggest the adequate fire resistance performance of structural columns by difference of length, an analysis was done based on an ordinary structural steels, SS 400, and hinge to hinge boundary condition. The result showed that the longer the column was, the less the fire resistance.


2014 ◽  
Vol 902 ◽  
pp. 3-6
Author(s):  
In Kyu Kwon

As the strength of structural steels is increasing, the performance of fire resistance should be evaluated clearly and suggested. While their application has been expanded, the evaluation of the fire resistance is inclined to adopt that derived from ordinary strength steels. In order to compare the fire resistance performance of high strength structural steels at high temperature, databases such as mechanical and thermal properties at elevated temperature were compared with those of Eurocode 3. After comparison, it is recommended that the passive protective material is more needed than those for the ordinary strength structural steels to meet the fire resistance requirement.


Author(s):  
Si-Hwa Jeong ◽  
Min-Gu Won ◽  
Nam-Su Huh ◽  
Yun-Jae Kim ◽  
Young-Jin Oh ◽  
...  

In this paper, the thermal stress characteristics of the pipe-in-pipe (PIP) system under high temperature condition are analyzed. The PIP is a type of pipe applied in sodium-cooled faster reactor (SFR) and has a different geometry from a single pipe. In particular, under the high temperature condition of the SFR, the high thermal stress is generated due to the temperature gradient occurring between the inner pipe and outer pipe. To investigate the thermal stress characteristics, three cases are considered according to geometry of the support. The fully constrained support and intermediate support are considered for case 1 and 2, respectively. For case 3, both supports are applied to the actual curved pipe. The finite element (FE) analyses are performed in two steps for each case. Firstly, the heat transfer analysis is carried out considering the thermal conduction, convection and radiation conditions. From the heat transfer analysis, the temperature distribution results in the piping system are obtained. Secondly, the structural analysis is performed considering the temperature distribution results and boundary conditions. Finally, the effects of the geometric characteristics on the thermal stress in the PIP system are analyzed.


2016 ◽  
Vol 128 (3) ◽  
pp. 1783-1792 ◽  
Author(s):  
Zhaoli Zhang ◽  
Yanping Yuan ◽  
Liping Ouyang ◽  
Qinrong Sun ◽  
Xiaoling Cao ◽  
...  

2014 ◽  
Vol 937 ◽  
pp. 424-427
Author(s):  
In Kyu Kwon

Fire resistance performance of structural members has been evaluated from each singular section and standard fire curve since the beginning of fire tests. However, the need of the exact fire resistance of H-section columns applied in the steel buildings has increased. The main reason for this is there is a difference between the conditions being conducted during the fire test and that from real situation. In this paper, the structural stability of H-section column made of an ordinary strength grade structural steels, SS 400, SM 400, and SM 490 at high temperature were evaluated and compared with boundary conditions and column’s length. This was done in order to suggest a new guideline for the application of fire protective materials in steel column in which the boundary conditions and column lengths are different from that tested with hinge to hinge and 3500 mm. The findings from this study showed hinge to hinge boundary condition was more conservative. And fire resistance performance of longer columns in the case of hinge to fixed and fixed to fixed boundary condition than from 3500 mm and hinge to hinge boundary condition can sustain at high temperature without adding fire protective materials.


2014 ◽  
Vol 901 ◽  
pp. 11-14
Author(s):  
In Kyu Kwon

Material strength is one of the most important factors in designing a building. For this reason, many structural steel manufacturers have been trying to develop it. In Korea, SM 570 is one high structural steel that has many merits such as longer span and reduction of construction cost for steel works. However, the fire resistance performance of H-section made of SM 570 has not been evaluated. Especially, in high-rise steel building that can be built with various joint systems like hinged to hinge, hinge to fixed, and fixed to fixed. However, the performance of fire resistant is limited. In this paper, to evaluate the fire resistance of H-section made of SM 570, the advanced fire design was conducted using regressive equation of the mechanical and thermal properties at high temperature, compared with those made of an ordinary structural steel, SS 400. The facts show that hinge to hinge had the lowest load bearing capacity at high temperature. Therefore, to keep the same fire resistance with other types boundary conditions, the more passive fire materials are required.


2014 ◽  
Vol 2014 ◽  
pp. 1-9 ◽  
Author(s):  
Jun Wei ◽  
Lokeswarappa R. Dharani ◽  
K. Chandrashekhara ◽  
Gregory E. Hilmas ◽  
William G. Fahrenholtz

The effects of oxidation on heat transfer and mechanical behavior of ZrB2-SiC ceramics at high temperature are modeled using a micromechanics based finite element model. The model recognizes that when exposed to high temperature in air ZrB2-SiC oxidizes into ZrO2, SiO2, and SiC-depleted ZrB2 layer. A steady-state heat transfer analysis was conducted at first and that is followed by a thermal stress analysis. A “global-local modeling” technique is used combining finite element with infinite element for thermal stress analysis. A theoretical formulation is developed for calculating the thermal conductivity of liquid phase SiO2. All other temperature dependent thermal and mechanical properties were obtained from published literature. Thermal stress concentrations occur near the pore due to the geometric discontinuity and material properties mismatch between the ceramic matrix and the new products. The predicted results indicate the development of thermal stresses in the SiO2 and ZrO2 layers and high residual stresses in the SiC-depleted ZrB2 layer.


2014 ◽  
Vol 893 ◽  
pp. 436-439
Author(s):  
In Kyu Kwon

Fire resistance performance in steel building is very important for sustaining structural stability during a fire. However, the fire performance has been evaluated by fire test with only one length of the H-section made of an ordinary strength structural steel, such as SS 400 or SM 400. These have the same yield strength, but SM 400 has a better weldability. Therefore, the determination of fire protective materials can be difficult when the H-section made of SS 400 and SM 400 is applied into columns having different lengths are changed. In this paper, an evaluation was conducted to suggest a new guideline for the fire resistance of H-section built with an ordinary strength steels such as SS 400 and SM 400 and having variance of lengths. The results revealed the H-section made of SM 400 showed a little better fire resistance performance. Also, the longer the length of column, the less the fire resistance. Therefore, a new guideline is required to compensate the fire resistance of longer column than that from fire tested.


2014 ◽  
Vol 543-547 ◽  
pp. 3857-3860
Author(s):  
In Kyu Kwon

A fire can cause serious damage to steel framed buildings so most of countries have fire regulations specifying fire resistance for structural elements. Fire resistance generally has been evaluated by a limited size testing facility. However, the size of columns and beams are different based on various conditions. Especially, the height of column and boundary condition are the main factors that govern the fire resistance of structural elements. To make a basic database for the H-section made of an ordinary grade structural steel, SM 400, an analysis was conducted by using mechanical and thermal properties with a proper theory. The fact findings suggested that the fire resistance for longer and fixed to fixed column were required a new guide line for covering of fire protective materials.


2021 ◽  
Vol 228 ◽  
pp. 111130
Author(s):  
Jianfeng Lu ◽  
Senfeng Yang ◽  
Zhenzhou Rong ◽  
Gechuanqi Pan ◽  
Jing Ding ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document