Fabrication of Tantalum Oxide Nanorods by DC Magnetron Sputtering with Glancing Angle Deposition
This study investigates tantalum oxide (Ta2O5) nanorods prepared by the dc magnetron sputtering with the glancing angle deposition (GLAD) technique. Silicon (100) wafer and glass slides were used as the substrates. The effect of the glancing angle varying from 73-87°, on the structural and optical properties were investigated by field-emission scanning electron microscopy (FE-SEM), atomic force microscope (AFM) and spectrophotometry. The results show that the deposition rate and diameter of Ta2O5 nanorod films were decreased with the increase in the glancing angle. At the highest glancing angle of 87°, the prepared Ta2O5 nanorod yielded the highest porosity from the vertically aligned columnar structure, and were must suitable for many functional applications.