Mechanical Properties and Stress-Strain Behaviour of Hybrid Fibre-Reinforced Self-Compacting Concrete

2014 ◽  
Vol 984-985 ◽  
pp. 677-683
Author(s):  
T. Meena ◽  
G. Elangovan ◽  
R. Ganesh

Self-Compacting Concrete (SCC) is a highly flowable, self-levelling concrete. Just as in Fibre Reinforced Concrete (FRC), fibres can be incorporated into SCC also to get FRSCC. In the present study hybrid fibres namely, Polypropylene and hooked ended Steel fibres are incorporated in different volume fractions and their fresh and hardened state properties have been studied. Fly ash and Silica Fume obtained as waste from industries are used as replacement for cement, the replacement being 10% and 5% respectively. The behaviour of HFRSCC under compression, tension and flexure has been experimentally observed. The stress-strain behaviour of SCC and HFRSCC have also been studied by varying the combinations of volume fractions of hybrid fibres.

Materials ◽  
2019 ◽  
Vol 12 (22) ◽  
pp. 3786 ◽  
Author(s):  
Abubaker A. M. Ahmed ◽  
Yanmin Jia

A comprehensive program of experiments consisting of compression, uniaxial compression, direct shear, flexural as well as splitting tensile and air permeability tests were performed to analyse the effect of the level of fibre dosage and the water–cement ratio on the physical properties of hybrid fibre-reinforced concrete (HFRC). Two types of fibres were studied in terms of their effect on the properties of HFRC. The results indicated that the mechanical properties of concrete were significantly improved by increasing the fibre content. However, increasing the percentage fibre content past a certain peak performance limit (0.9% glass fibre (GF) and 0.45% polypropylene fibre (PPF)) led to a decrease in strength compared to reference mixes. Additionally, the incorporation of hybrid fibres yielded an increase in air permeability in the tested specimens. The results showed that the strength-related properties of HFRC were superior to the properties of single fibre-reinforced concrete.


2020 ◽  
Vol 8 (9) ◽  
pp. 86-104
Author(s):  
Eniyachandramouli Gunasekaran ◽  
◽  
Govindhan Shanmugam ◽  
Ranjithselvan Karuppusamy ◽  
◽  
...  

2016 ◽  
Vol 68 (22) ◽  
pp. 1183-1186 ◽  
Author(s):  
Aref Abadel ◽  
Husain Abbas ◽  
Tarek Almusallam ◽  
Yousef Al-Salloum ◽  
Nadeem Siddiqui ◽  
...  

This paper presents a series of tests for characterizing the structural behavior of fibre reinforced concrete subjected to different loading. The experimental program involves investigation of fly ash replaced concrete with two types of fibres i.e. Steel fibre and polypropylene fibre. Plain concrete and conventionally fly ash replaced reinforced concrete specimens have also been casted and tested in the laboratory. The mechanical properties of Conventional M30 grade of concrete and concrete with cement replaced by fly ash and reinforced with steel and polypropylene fibres of three volume fractions of 0.2 % to 1.4 % are studied. This research is to study about the mechanical properties of fly ash with steel and polypropylene as a strengthening material


2012 ◽  
Vol 253-255 ◽  
pp. 537-541 ◽  
Author(s):  
S. Palanivel ◽  
M. Sekar

Although various models exist for envelope curves of concrete confined by transverse reinforcement, only a few simple models represent the hysteretic behavior of the confined concrete; therefore, development of stress–strain model of unloading and reloading paths for confined concrete is needed. In this paper, an experimental and numerical investigation for describing the cyclic stress–strain behavior of lateral ties confined and polyolefin fibre reinforced concrete (CPFRC) prisms under repeated axial compressive loading is presented. The study focuses on the effect of repeated unloading and reloading cycles on confined concrete prisms. The combined effect of spacing of lateral ties and volume fraction of polyolefin fibres was studied both experimentally and numerically from the point of deformability characteristics of concrete under repeated loading as loading, unloading and reloading.The envelope curve is derived from the results of uniaxial, monotonic, compression loading tests specimens. It explicitly accounts for the effects of lateral tie spacing of 145mm spacing and 75mm spacing and polyolefin fibres of volume fractions 0.7% and 1.2% on concrete prisms of size 150 ×150 ×300 mm were investigated. The behaviour is implemented in the finite element program in ANSYS software, with a view to analyzing CPFRC prisms under repeated loading. This analysis accounts for energy dissipation through hysteretic behavior, stiffness degradation as damage progresses, and degree of confinement. It was observed from hysteretic behavior that for increased polyolefin fibres volume fractions the degradation of strength and stiffness reduces significantly.


This study presents the experimental investigation carried out to study the mechanical properties of concrete with and without the addition of fibres to it.d Concrete is the most consumed material in the world which has the property of strong in compression and weak in tension. Also plain concrete possess very limited ductility and little resistance to cracking. Hence fibres are introduced in the concrete to improve the tensile strength & brittleness of the concrete. These fibres which are closely spaced and dispersed uniformly in the concrete arrest the micro and macro cracks and improve the tensile strength of concrete. Concrete admixed with such fibres are known as Fibre Reinforced Concrete. The combination of two (or) more fibres called as Hybridization is carried out in this work. M25 grade concrete is designed as per IS 10262:2009 with the volume fraction of 0-1.5%. The workability of the concrete is affected due to the addition of fibres and hence super plasticizers are added to the concrete. The fibres considered for the study are (i) Crimped Steel Fibre (0-1.5%) and (ii) Shortcut Glass Fibre (0.1-0.2%). The behaviour of the hybrid fibre reinforced concrete is investigated by conducting compressive strength test on cube specimen of size 150mmx150mmx150mm and split tensile strength test on cylinder specimen of size 150mm diameter and 300mm height. From the experimental results, the optimum fibre combinations for maximum compressive strength and spilt tensile strength of concrete are identified.


2018 ◽  
Vol 26 (2) ◽  
pp. 30-34 ◽  
Author(s):  
M. Venu ◽  
T. D. Gunneswara Rao

AbstractThis paper focuses on the mechanical properties and modulus of elasticity of fly ash and GGBS based geopolymer concrete. In this study an 8 molarity concentration of NaOH and alkaline liquid ratio in a ratio of 2.5 was used. This study includes the stress-strain behaviour along with the flexural strength, compressive strength and split tensile strengths for the GPC20, GPC40 and GPC60 grades. Tests were carried out on 150 mm × 150 mm × 150 mm cubes and 100 × 100 × 500 mm prisms and 150 × 300 mm cylindrical geopolymer concrete specimens. The test results not- ed the good mechanical properties and measured stress-strain relations of fly ash and GGBS based geopolymer concrete under ambient curing conditions. The elastic modulus was significantly varied with increases in the grade of the concrete. An equation was proposed to determine the modulus of elasticity based on the compressive strength of the geopolymer concrete.


Sign in / Sign up

Export Citation Format

Share Document