Influence of Magnetic Field of Super High Frequency on Hysteretic Properties of Soft Magnetic Microwires

2014 ◽  
Vol 93 ◽  
pp. 203-207
Author(s):  
Alexander Chizhik ◽  
Julian Gonzalez ◽  
Arkadi Zhukov ◽  
Andrzej Stupakiewicz ◽  
Andrzej Maziewski

Normal 0 21 false false false MicrosoftInternetExplorer4 The influence of super high frequency (SHF) circular magnetic field on magnetization reversal in the Co-rich glass covered microwire has been investigated. The study has been performed by magneto-optical Kerr effect (MOKE) technique. It was found that the presence of the SHF field causes the change of the re-magnetization mechanism – the rotation of the magnetization is observed instead of domain walls motion. Also the hysteresis loop has an asymmetric shape that confirms the co-existence of the stable and meta-stable helical magnetic states in the surface of microwires. /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Tabla normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-parent:""; mso-padding-alt:0cm 5.4pt 0cm 5.4pt; mso-para-margin:0cm; mso-para-margin-bottom:.0001pt; mso-pagination:widow-orphan; font-size:10.0pt; font-family:"Times New Roman"; mso-ansi-language:#0400; mso-fareast-language:#0400; mso-bidi-language:#0400;}

2021 ◽  
Vol 6 (3) ◽  
pp. 167-178
Author(s):  
Artem D. Talantsev ◽  
Ekaterina I. Kunitsyna ◽  
Roman B. Morgunov

In this paper, we present the study of domain structure accompanying interstate transitions in Pt/Co/Ir/Co/Pr synthetic ferrimagnet (SF) of 1.1 nm thick and 0.6 – 1.0 nm thin ferromagnetic Co layers. Variation in the thickness of the thin layer causes noticeable changes in the domain structure and mechanism of magnetization reversal revealed by MOKE (Magneto-Optical Kerr Effect) technique. Magnetization reversal includes coherent rotation of magnetization of the ferromagnetic layers, generation of magnetic nuclei, spreading of domain walls (DW), and development of areas similar with strip domains, dependently on thickness of the thin layer. Inequivalence of the direct and backward transitions between magnetic states of SF with parallel and antiparallel magnetizations was observed in sample with thin layer thicknesses 0.8 nm and 1.0 nm. Asymmetry of the transition between these states is expressed in difference fluctuation fields and shapes of reversal magnetization nucleus contributing to the correspondent forward and backward transitions. We proposed simple model based on asymmetry of Dzyaloshinskii–Moriya interaction. This model explains competition between nucleation and domain wall propagation due to increase/decrease of the DW energy dependently on direction of the spin rotation into the DW in respect to external field.


Author(s):  
Alexander Chizhik ◽  
Julian Gonzalez ◽  
Arcady Zhukov ◽  
Andrzej Stupakiewicz ◽  
Andrzej Maziewski

2013 ◽  
Vol 710 ◽  
pp. 80-84 ◽  
Author(s):  
Zhen Gang Guo ◽  
Li Qing Pan ◽  
Hong Mei Qiu ◽  
M. Yasir Rafique ◽  
Shuai Zeng

The magnetization reversal processes of magnetic nanorings (Co50Fe50) with different geometric shapes are investigated. In addition to the expected onion and vortex magnetization states, other metastable states are observed in the magnetization processes. We anatomize the formation and transition of magnetic states, and the propagation and annihilation of domain walls in the reversal process through the dynamic picture. Phase diagrams for the magnetization switching behavior depending on the geometric parameters are presented. The simulation shows that the vortex state is stabilized in thick and narrow rings. The switching field from vortex to onion states turns out to increase with thickness and decrease with width and diameter.


Author(s):  
Xiao Zhang

Electron holography has recently been available to modern electron microscopy labs with the development of field emission electron microscopes. The unique advantage of recording both amplitude and phase of the object wave makes electron holography a effective tool to study electron optical phase objects. The visibility of the phase shifts of the object wave makes it possible to directly image the distributions of an electric or a magnetic field at high resolution. This work presents preliminary results of first high resolution imaging of ferroelectric domain walls by electron holography in BaTiO3 and quantitative measurements of electrostatic field distribution across domain walls.


Sign in / Sign up

Export Citation Format

Share Document