Bioactive and Biocompatible Silica/Pseudowollastonite Aerogels

2014 ◽  
Vol 96 ◽  
pp. 21-26 ◽  
Author(s):  
P.J. Reséndiz-Hernández ◽  
D.A. Cortés-Hernández ◽  
Juan Méndez Nonell ◽  
J.C. Escobedo-Bocardo

Silica aerogels have attracted increasingly more attention due to their extraordinary properties and their existing and potential applications in a wide variety of technological areas. Materials that promote bone-tissue formation at their surface and bond to osseous tissues when implanted are called bioactive, such as pseudowollastonite particles. In this work, the synthesis of aerogels with pseudowollastonite particles was performed. The synthesis involved the preparation of an alcogel by a two step sol-gel route followed by ambient pressure drying. To promote a higher bioactivity the obtained aerogels were then biomimetically treated using simulated body fluids, SBF and 1.5 SBF. A high bioactivity was demonstrated by FT-IR, SEM, EDS, and XRD. The in vitro biocompatibility was assessed by testing cytotoxicity using rat osteoblasts cultures. The results obtained indicate that these materials are highly potential aerogels for bone tissue regeneration.

Nanomedicine ◽  
2020 ◽  
Vol 15 (20) ◽  
pp. 1995-2017
Author(s):  
Guo Ye ◽  
Fangyuan Bao ◽  
Xianzhu Zhang ◽  
Zhe Song ◽  
Youguo Liao ◽  
...  

The global incidence of bone tissue injuries has been increasing rapidly in recent years, making it imperative to develop suitable bone grafts for facilitating bone tissue regeneration. It has been demonstrated that nanomaterials/nanocomposites scaffolds can more effectively promote new bone tissue formation compared with micromaterials. This may be attributed to their nanoscaled structural and topological features that better mimic the physiological characteristics of natural bone tissue. In this review, we examined the current applications of various nanomaterial/nanocomposite scaffolds and different topological structures for bone tissue engineering, as well as the underlying mechanisms of regeneration. The potential risks and toxicity of nanomaterials will also be critically discussed. Finally, some considerations for the clinical applications of nanomaterials/nanocomposites scaffolds for bone tissue engineering are mentioned.


Polymers ◽  
2019 ◽  
Vol 11 (2) ◽  
pp. 230 ◽  
Author(s):  
Jie Xu ◽  
Xueyan Hu ◽  
Siyu Jiang ◽  
Yiwei Wang ◽  
Roxanne Parungao ◽  
...  

In this study, composite scaffolds with different multi-walled carbon nanotubes (MWCNTs) content were prepared by freeze-drying. These scaffolds were characterized by scanning electron microscope (SEM), energy dispersive spectroscopy (EDS), Fourier transform infrared spectroscopy (FTIR), porosity, hydrophilicity, mechanical strength, and degradation. The MWCNTs scaffolds were structurally sound and had porous structures that offered ample space for adherence, proliferation, and differentiation of MC3T3-E1 cells, and also supported the transport of nutrients and metabolic waste. CS/Gel/nHAp/0.3%MWCNTs scaffolds provided the best outcomes in terms of scaffold porosity, hydrophilicity, and degradation rate. However, CS/Gel/nHAp/0.6%MWCNTs scaffolds were found to support the optimal growth, homogenous distribution, and biological activity of MC3T3-E1 cells. The excellent properties of CS/Gel/nHAp/0.6%MWCNTs scaffolds for the adhesion, proliferation, and osteogenesis differentiation of MC3T3-E1 cells in vitro highlights the potential applications of this scaffold in bone tissue regeneration.


2017 ◽  
Vol 45 (9) ◽  
pp. 2075-2087 ◽  
Author(s):  
Zheng Jing ◽  
Yeke Wu ◽  
Wen Su ◽  
Mi Tian ◽  
Wenlu Jiang ◽  
...  

2014 ◽  
pp. 4277 ◽  
Author(s):  
Antonio Barrientos-Duran ◽  
Ellen M. Carpenter ◽  
Nicole I. zur Nieden ◽  
Theodore I. Malinin ◽  
Juan Carlos Rodriguez-Manzaneque ◽  
...  

2013 ◽  
Vol 2013 ◽  
pp. 1-7 ◽  
Author(s):  
Xinhui Liu ◽  
Guoping Zhang ◽  
Chuanyong Hou ◽  
Hua Wang ◽  
Yelin Yang ◽  
...  

The repair of the damaged bone tissue caused by damage or bone disease was still a problem. Current strategies including the use of autografts and allografts have the disadvantages, namely, diseases transmission, tissue availability and donor morbidity. Bone tissue engineering has been developed and regarded as a new way of regenerating bone tissues to repair or substitute damaged or diseased ones. The main limitation in engineering in vitro tissues is the lack of a sufficient blood vessel system, the vascularization. In this paper, a new-typed hydroxyapatite/collagen composite scaffold which was reinforced by chitosan fibers and cultured with osteoblasts and endothelial cells was fabricated. General observation, histological observation, detection of the degree of vascularization, and X-ray examination had been done to learn the effect of vascularized bone repair materials on the regeneration of bone. The results show that new vessel and bone formed using implant cultured with osteoblasts and endothelial cells. Nanofiber-reinforced scaffold cultured with osteoblasts and endothelial cells can induce vascularized bone tissue formation.


Bone ◽  
2012 ◽  
Vol 51 (6) ◽  
pp. S17
Author(s):  
M. Nakatsuka ◽  
S. Kumabe ◽  
Y. Hashimoto ◽  
A. Hosoya ◽  
C. An ◽  
...  

2000 ◽  
Vol 192-195 ◽  
pp. 605-608
Author(s):  
S. Loty ◽  
J.M. Sautier ◽  
C. Loty ◽  
M.T. Tan ◽  
D.C. Greenspan ◽  
...  

2017 ◽  
Vol 2017 ◽  
pp. 1-9 ◽  
Author(s):  
Jiangming Yu ◽  
Lizhang Xu ◽  
Ning Xie ◽  
Kai Li ◽  
Yanhai Xi ◽  
...  

We investigated the slow release of Zn ion (Zn2+) from nanocoatings and compared the in vitro response of osteoblasts (MC3T3-E1) and proosteoclasts (RAW 264.7) cultured on Ca2ZnSi2O7 nanocoated with different Zn/Ca molar ratios on a Ti-6Al-4V (i.e., Ti) substrate to optimize cell behaviors and molecule levels. Significant morphology differences were observed among samples. By comparing with pure Ti and CaSiO3 nanocoating, the morphology of Ca2ZnSi2O7 ceramic nanocoatings was rough and contained small nanoparticles or aggregations. Slow Zn2+ release from nanocoatings was observed and Zn2+ concentration was regulated by varying the Zn/Ca ratios. The cell-response results showed Ca2ZnSi2O7 nanocoating at different Zn/Ca molar ratios for osteoblasts and osteoclasts. Compared to other nanocoatings and Ti, sample Zn/Ca (0.3) showed the highest cell viability and upregulated expression of the osteogenic differentiation genes ALP, COL-1, and OCN. Additionally, sample Zn/Ca (0.3) showed the greatest inhibition of RAW 264.7 cell growth and decreased the mRNA levels of osteoclast-related genes OAR, TRAP, and HYA1. Therefore, the optimal Zn-Ca ratio of 0.3 in Ca2ZnSi2O7 ceramic nanocoating on Ti had a dual osteoblast-promoting and osteoclast-inhibiting effect to dynamically balance osteoblasts/osteoclasts. These optimal Zn-Ca ratios are valuable for Ca2ZnSi2O7 ceramic nanocoating on Ti-coated implants for potential applications in bone tissue regeneration.


2020 ◽  
Vol 15 (4) ◽  
pp. 1519-1534
Author(s):  
Ziyan Nie ◽  
Xuesong Wang ◽  
Liling Ren ◽  
Yunqing Kang

Aim: The objectives of this study were to develop a new decellularized bone matrix (DBM) and to investigate its effect on the in vitro cell behavior of human bone marrow-derived mesenchymal stem cells (hMSCs), compared with porous β-tricalcium phosphate (β-TCP) scaffolds. Materials & methods: Triton X-100 and deoxycholate sodium solution, combining DNase I and RNase, were used to decellularize porcine bones. The DBM were then characterized by DNA contents and matrix components. hMSCs were then seeded on the DBM and β-TCP scaffolds to study cell behavior. Results: Results showed that most porcine cells were removed and the matrix components of the DBM were maintained. Cell culture results showed that DBM promoted cell attachment and proliferation of hMSCs but did not significantly promote the gene expression of osteogenic genes, compared with β-TCP scaffolds. Conclusion: DBM has similar function on cell behavior to β-TCP scaffolds that have promising potential in bone tissue regeneration.


Sign in / Sign up

Export Citation Format

Share Document