Optimisation of Nickel Aluminising by CVD

2012 ◽  
Vol 323-325 ◽  
pp. 367-372 ◽  
Author(s):  
Patrick J. Masset ◽  
Agnieszka Bogusz ◽  
Jan Sieniawski ◽  
Bartek Wierzba ◽  
Katarzyna Tkacz-Śmiech

Results Concerning Nickel Aluminisation with Application of Chemical Vapour Deposition Method Are Presented. Two-Step Processing under Investigation Consists of Al Chloride Formation in the Primary Vessel and Al Deposition in the Secondary One. the Initial Gas Stream Is Composed of Hcl Dissolved in H2at Various Ratios. it Was Shown that the Choice of the [HCl]/[H2] Ratio and the Determination of the Optimum Temperature to Produce Most Preferential β-Nial Phase May Be Done with the Use of Thermodynamic Calculations. the Results Obtained with Application of Factsage Program Confirm Essential Influence of both Initial [HCl]/[H2] Ratio (in the Range between 0,05 and 100) and the Temperature in the Second Vessel (1123 K – 1323 K) on Aluminium Chloride Partial Pressures and Hence Aluminium Content in its Gaseous Donors and at the Substrate Surface (boundary Condition for Interdiffusion in Ni-Al System). it Was Confirmed that β-Nial Growth Is Favoured at Low [HCl]/[H2] Ratios and High Temperatures for which Alcl and AlCl2Partial Pressures Increase with Respect to that of AlCl3. the Thermodynamic Predictions Remain in Agreement with CVD Experiments. the Presented Thermodynamic Data May Be Used as a Source of Essential Information for Designing Further Experiments in this Field as Well as for Modelling of Solid-State Diffusion in Ni-Al System.

1986 ◽  
Vol 108 (4) ◽  
pp. 645-654 ◽  
Author(s):  
R. H. Buckholz ◽  
J. F. Lin

An analysis for hydrodynamic, non-Newtonian lubrication of misaligned journal bearings is given. The hydrodynamic load-carrying capacity for partial arc journal bearings lubricated by power-law, non-Newtonian fluids is calculated for small valves of the bearing aspect ratios. These results are compared with: numerical solutions to the non-Newtonian modified Reynolds equation, with Ocvirk’s experimental results for misaligned bearings, and with other numerical simulations. The cavitation (i.e., film rupture) boundary location is calculated using the Reynolds’ free-surface, boundary condition.


1993 ◽  
Author(s):  
Bruce S. Rosen ◽  
Joseph P. Laiosa ◽  
Warren H. Davis ◽  
David Stavetski

A unique free-surface flow methodology and its application to design and analysis of IACC yachts are discussed. Numerical aspects of the inviscid panel code and details of the free-surface boundary condition are included, along with enhancements developed specifically for the '92 America's Cup defense. Extensive code validation using wind tunnel and towing tank experimental data address several areas of interest to the yacht designer. Lift and induced drag at zero Froude number are studied via a series of isolated fin/bulb/winglet appendages. An isolated surface piercing foil is used to evaluate simple lift/free­surface interactions. For complete IACC yacht models, upright wave resistance is investigated, as well as lift and induced drag at heel and yaw. The excellent correlation obtained for these cases demonstrates the value of this linear free-surface methodology for use in designing high performance sailing yachts.


2013 ◽  
Vol 592-593 ◽  
pp. 469-472 ◽  
Author(s):  
Ryszard Filip ◽  
Marek Góral ◽  
Marcin Zawadzki ◽  
Andrzej Nowotnik ◽  
Maciej Pytel

The article presents the investigation of influence of long-term annealing of Zr modified aluminide coatings on its microstructure. The coatings were deposited by Chemical Vapour Deposition on MAR M200+Hf nickel superalloy. Annealing was carried out in a vacuum furnace at the temperature 1020°C within the period of 12, 16 and 20 hours respectively. The microstructral analysis was carried out using Hitachi S-3400 scanning electron microscope. Phase changes in the aluminide layer were observed, particularly the NiAl phase into Ni3Al. Changes in thickness of individual layers in the coating were observed. Conducted research showed that there is no influence of Zr on structure of the aluminide coating during annealing. The structure changes are similar to observed in simple aluminide coating. The maximum time of heat treatment without significant influence on structure of aluminide coating is 16 hours. After that time the main component of coating is NiAl phase.


2006 ◽  
Vol 956 ◽  
Author(s):  
Paul William May ◽  
Matthew Hannaway

ABSTRACTUltrananocrystalline diamond (UNCD) films have been deposited using hot filament chemical vapour deposition using Ar/CH4/H2 gas mixtures plus additions of B2H6 in an attempt to make p-type semiconducting films. With increasing additions of B2H6 from 0 to 40,000 ppm with respect to C, the film growth rate was found to decrease substantially, whilst the individual grain sizes increased from nm to μm. With 40,000 ppm of B2H6, crystals of boric oxide were found on the substrate surface, which slowly hydrolysed to boric acid on exposure to air. These results are rationalised using a model for UNCD growth based on competition for surface radical sites between CH3 and C atoms.


Sign in / Sign up

Export Citation Format

Share Document