Chemical Reaction and Melting Heat Effects on MHD Free Convective Radiative Fluid Flow Past a Continuous Moving Plate in the Presence of Thermo-Physical Parameters

2018 ◽  
Vol 384 ◽  
pp. 80-98
Author(s):  
Damilare J. Samuel

This study focuses on the analytical solution for the chemical reaction and melting heat transfer effects on MHD steady two-dimensional laminar viscous incompressible radiating boundary layer flow over a flat plate in the presence of variable fluid properties and Soret effect. The presence of viscous dissipation is also put into consideration at the plate under the influence of uniform transverse magnetic field. A mathematical model is developed to investigate the heat transfer characteristics occurring during the melting process due to a stretching sheet. The model contains nonlinear coupled partial differential equations which have been transformed into a system of ordinary differential equation via suitable similarity variables and then solved analytically by employing the Homotopy analysis method (HAM). The convergence of the series solution is established. The impact of various controlling parameters on the flow, heat and mass transfer characteristics are analyzed and discussed in detail through graphs and tables. The velocity and temperature depreciate with increase in radiation parameter and variable viscosity parameter. It is observed that for rising values of magnetic field parameter, variable viscosity parameter, and Prandtl number, the local skin friction increases while a reverse effect is seen in the case of Grashof number and melting parameter. It is found that the temperature decreases as the thermal radiation and melting parameter increase.

2017 ◽  
Vol 2017 ◽  
pp. 1-9 ◽  
Author(s):  
M. Sheikholeslami ◽  
R. Ellahi ◽  
C. Fetecau

Impact of nanofluid natural convection due to magnetic field in existence of melting heat transfer is simulated using CVFEM in this research. KKL model is taken into account to obtain properties of CuO–H2O nanofluid. Roles of melting parameter (δ), CuO–H2O volume fraction (ϕ), Hartmann number (Ha), and Rayleigh (Ra) number are depicted in outputs. Results depict that temperature gradient improves with rise of Rayleigh number and melting parameter. Nusselt number detracts with rise of Ha. At the end, a comparison as a limiting case of the considered problem with the existing studies is made and found in good agreement.


2019 ◽  
Vol 9 (24) ◽  
pp. 5492 ◽  
Author(s):  
Muhammad Ramzan ◽  
Hina Gul ◽  
Seifedine Kadry ◽  
Chhayly Lim ◽  
Yunyoung Nam ◽  
...  

A novel mathematical model is envisioned discussing the magnetohydrodynamics (MHD) steady incompressible nanofluid flow with uniform free stream velocity over a thin needle in a permeable media. The flow analysis is performed in attendance of melting heat transfer with nonlinear chemical reaction. The novel model is examined at the surface with the slip boundary condition. The compatible transformations are affianced to attain the dimensionless equations system. Illustrations depicting the impact of distinct parameters versus all involved profiles are supported by requisite deliberations. It is perceived that the melting heat parameter has a declining effect on temperature profile while radial velocity enhances due to melting.


Coatings ◽  
2022 ◽  
Vol 12 (1) ◽  
pp. 93
Author(s):  
Kottakkaran Sooppy Nisar ◽  
Aftab Ahmed Faridi ◽  
Sohail Ahmad ◽  
Nargis Khan ◽  
Kashif Ali ◽  
...  

The mass and heat transfer magnetohydrodynamic (MHD) flows have a substantial use in heat exchangers, electromagnetic casting, X-rays, the cooling of nuclear reactors, mass transportation, magnetic drug treatment, energy systems, fiber coating, etc. The present work numerically explores the mass and heat transportation flow of MHD micropolar fluid with the consideration of a chemical reaction. The flow is taken between the walls of a permeable channel. The quasi-linearization technique is utilized to solve the complex dynamical coupled and nonlinear differential equations. The consequences of the preeminent parameters are portrayed via graphs and tables. A tabular and graphical comparison evidently reveals a correlation of our results with the existing ones. A strong deceleration is found in the concentration due to the effect of a chemical reaction. Furthermore, the impact of the magnetic field force is to devaluate the mass and heat transfer rates not only at the lower but at the upper channel walls, likewise.


Author(s):  
S Shuchi ◽  
K Sakatani ◽  
H Yamaguchi

An investigation was conducted for heat transfer characteristics of binary magnetic fluid flow in a partly heated circular pipe experimentally. The boiling heat transfer characteristics on the effects of the relative position of the magnetic field to the heated region were particularly considered in the present study. From the experimental verification, the Nusselt number, representing boiling heat transfer characteristics, was obtained for various flow and magnetic conditions which were represented by the non-dimensional parameters of the Reynolds number and the magnetic pressure number. Additionally, the rate of change of the Nusselt number found by applying the magnetic field was also estimated and the optimal position of the field to the partly heated region was discussed. The results indicated that the effect of the magnetic field to the heat transfer rate from the heated wall was mainly subjected to the effect of the vortices induced in the magnetic field region and the possibility of controlling the heat transfer rate by applying an outer magnetic field to utilize the effect.


2018 ◽  
Vol 141 (1) ◽  
Author(s):  
M. Farooq ◽  
S. Ahmad ◽  
M. Javed ◽  
Aisha Anjum

In this attempt, melting heat transfer characteristic of unsteady squeezed nanofluid flows in non-Darcy porous medium is interrogated. The nanofluid model incorporates Brownian diffusion and thermophoresis to characterize the heat and mass transport in the presence of thermal and solutal stratification. Similarity solutions are implemented to acquire nonlinear system of ordinary differential equations which are then evaluated using Homotopic technique. Flow behavior of involved physical parameters is examined and explanations are stated through graphs. We determine and analyze skin friction coefficient, Nusselt and Sherwood numbers through graphs. It is evident that larger melting parameter results in decrement in temperature field, while horizontal velocity enhances for higher melting parameter. Moreover, temperature and concentration fields are dominant for higher Brownian diffusion parameter.


Sign in / Sign up

Export Citation Format

Share Document