Impact of Soret and Dufour Numbers on MHD Casson Fluid Flow Past an Exponentially Stretching Sheet with Non-Uniform Heat Source/Sink

2018 ◽  
Vol 388 ◽  
pp. 14-27 ◽  
Author(s):  
Janke Venkata Ramana Reddy ◽  
Vangala Sugunamma ◽  
N. Sandeep

Present study deals with the impact of cross diffusion on Casson fluid flow in the presence of Lorentz force. Flow is caused by the exponential stretching of surface in two lateral directions. The influence of space dependent varying heat sink/source is also contemplated. The basic governing equations are first converted into system of ODEs and then solved using an efficient numerical procedure namely R.K. based shooting technique. From the solution we found that flow is affected by some physical parameters like Casson parameter, non uniform heat parameters, Soret and Dufour numbers etc. Hence the impact of such parameters on velocity, temperature and concentration profiles is shown via plots. Further the friction factor, local Nusselt and Sherwood numbers are also calculated and given in tables. Results indicate that an increase in the Casson parameter enhances the temperature and concentration fields. Dufour and Soret numbers have tendency to enhance temperature and concentration fields respectively.

2019 ◽  
Vol 8 (1) ◽  
pp. 283-292 ◽  
Author(s):  
R. Saravana ◽  
M. Sailaja ◽  
R. Hemadri Reddy

Abstract In the study, we inspect the impact of cross diffusion and aligned magnetic field on Casson fluid flow along a stretched surface of variable thickness. The differential equations explaining the flow situation have been transitioned with the succor of suited transfigurations. The solution of the problem is achieved by using bvp5c Matlab package. From the solution, it is perceived that the flow, temperature and concentration fields are affected by the sundry physical quantities. Results explored for the flow over a uniform and a non-uniform thickness surfaces. The influence of emerging parameters on the flow, energy and mass transport are discussed with graphical and tabular results. Results show that the thermal, flow and species boundary layers are uneven for the flow over a uniform and non-uniform thickness stretched surfaces.


2019 ◽  
Vol 13 (1) ◽  
pp. 4558-4574 ◽  
Author(s):  
K. Anantha Kumar ◽  
B. Ramadevi ◽  
V. Sugunamma ◽  
J. V. Ramana Reddy

This report presents the flow and heat transfer characteristics on magnetohydrodynamic non-Newtonian fluid across a wedge near the stagnation point. The fluid flow is time independent and laminar. The radiation and irregular heat sink/source effects are deemed. The system of nonlinear ODEs is attained from PDEs by choosing the proper similarity transformations. Further, the well-known shooting and Runge-Kutta methods are utilized to acquire the problem’s solution subject to assumed boundary conditions. Figures are outlined to emphasize the impact of several parameters on the fields of velocity and temperature. Further, the rate of heat transfer and friction factor are also anticipated and portrayed with the assistance of table. Results indicate that the curves of velocity diminish with shrinking parameter, magnetic field parameter and material fluid parameter. Also the non-uniform heat source/sink parameters play a crucial role in the heat transfer performance.


2018 ◽  
Vol 28 (6) ◽  
pp. 1238-1255 ◽  
Author(s):  
Prabhugouda Mallanagouda Patil ◽  
Nafisabanu Kumbarwadi ◽  
Shashikant A.

Purpose The purpose of this paper is to investigate the magnetohydrodynamics mixed convection flow over an exponentially stretching surface in the presence of non-uniform heat source/sink and cross-diffusion. Adequate non-similar transformations are used to transform governing mixed convection boundary layer equations to dimensionless form. Design/methodology/approach These dimensionless partial differential equations are solved by using implicit finite difference scheme in conjunction with Quasi-linearization technique. Findings The effects of admissible parameters such as Eckert number (Ec), the ratio of buoyancy forces parameter (N), non-uniform heat source/sink, Soret and Dufour numbers on flow, temperature and concentration distributions are discussed and analysed through graphs. In addition, the results for skin friction coefficient, Sherwood number and Nusselt number are presented and discussed graphically. Originality/value In literature, no research work has been found in similar to this research paper.


2015 ◽  
Vol 12 (2) ◽  
pp. 125-136 ◽  
Author(s):  
D. Mythili ◽  
R. Sivaraj ◽  
M. M. Rashidi ◽  
Z. Yang

The present investigation deals with the study of unsteady, free convective Casson fluid flow over a vertical cone saturated with porous medium in the presence of non-uniform heat source/sink, high order chemical reaction and cross diffusion effects. The numerical computation for the governing equations has been performed using an implicit finite difference method of Crank-Nicolson type. The influence of various physical parameters on velocity, temperature and concentration distributions is illustrated graphically and the physical aspects are discussed in detail. Results indicate that temperature dependent heat source/sink plays a vital role on controlling the heat transfer however the surface-dependent heat source/sink also has notable influence on the heat transfer characteristics. It is to be noted that high order chemical reaction has the tendency to dilute the influence of chemical reaction parameter on the species concentration.


2017 ◽  
Vol 11 ◽  
pp. 182-190
Author(s):  
Gauri Shenkar Seth ◽  
Rohit Sharma ◽  
B. Kumbhakar ◽  
R. Tripathi

An investigation is carried out for the steady, two dimensional stagnation point flow of a viscous, incompressible, electrically conducting, optically thick heat radiating fluid taking viscous dissipation into account over an exponentially stretching non-isothermal sheet with exponentially moving free-stream in the presence of uniform transverse magnetic field and non-uniform heat source/sink. The governing boundary layer equations are transformed into highly nonlinear ordinary differential equations using suitable similarity transform. Resulting boundary value problem is solved numerically with the help of 4th-order Runge-Kutta Gill method along with shooting technique. Effects of various pertinent flow parameters on the velocity, temperature field, skin friction and Nusselt number are described through figures and tables. Also, the present numerical results are compared with the earlier published results for some reduced case and a good agreement has been found among those results.


Author(s):  
Khadijah M. Abualnaja

This paper introduces a theoretical and numerical study for the problem of Casson fluid flow and heat transfer over an exponentially variable stretching sheet. Our contribution in this work can be observed in the presence of thermal radiation and the assumption of dependence of the fluid thermal conductivity on the heat. This physical problem is governed by a system of ordinary differential equations (ODEs), which is solved numerically by using the differential transformation method (DTM). This numerical method enables us to plot figures of the velocity and temperature distribution through the boundary layer region for different physical parameters. Apart from numerical solutions with the DTM, solutions to our proposed problem are also connected with studying the skin-friction coefficient. Estimates for the local Nusselt number are studied as well. The comparison of our numerical method with previously published results on similar special cases shows excellent agreement.


Sign in / Sign up

Export Citation Format

Share Document