Tensile and Morphology Properties of PLA/MMT-TiO2 Bionanocomposites

2020 ◽  
Vol 398 ◽  
pp. 131-135
Author(s):  
Luqman I. Alrawi ◽  
N.Z. Noriman ◽  
Mohamed K. Alomar ◽  
Abdulkader M. Alakrach ◽  
Omar Sabbar Dahham ◽  
...  

The aim of this study is to produce PLA nanocomposites by solvent casting incorporating Montmorillonite nanoclays (MMT) and titanium dioxide (TiO2) nanoparticles. The effects of difference loadings of MMT in PLA and different loadings of TiO2 on mechanical and morphology properties were studied. The nanocomposites were prepared by solvent casting at different loadings of MMT (0, 2, 4, 6 and 8 wt %) and different loadings of TiO2 (1 and 3 wt %) respectively. The properties such as tensile properties (tensile strength, elongation at break, and modulus of elasticity) and morphology were determined. The results indicate that 4 wt% of MMT loading produced the best tensile properties. However, the incorporation of TiO2 showed an improvement in the modulus of elasticity of PLA/MMT nanocomposites mainly at 1 wt % loading of TiO2.

2015 ◽  
Vol 754-755 ◽  
pp. 66-70
Author(s):  
Mohd Akmalhakim bin Dato’ Hasnan ◽  
Salmah Husseinsyah ◽  
Lim Bee Ying ◽  
Mohd Faizal Abd Rahman

Nowadays bioplastics is the most recent study materials as the substitute for conventional plastics. The interest in bioplastics has lead to the production of polylactic acid (PLA) biocomposite films. In this study the PLA/Corn husk (CH) biocomposite films were prepared by using solvent casting method and the effect of CH content on the tensile properties were studied. The result found that increasing of CH content decreased the tensile strength and elongation at break of the biocomposites film. While, the modulus of elasticity increased with the increasing of CH content in the PLA matrix.


2015 ◽  
Vol 754-755 ◽  
pp. 161-165
Author(s):  
Nurul Fatin Syazwani binti Arshad ◽  
Salmah Husseinsyah ◽  
Lim Bee Ying

This research focused on the utilization of kapok husk (KH) as filler in low linear density polyethylene (LLDPE). The effect of filler content on tensile properties and morphology of LLDPE/KH eco-composites were investigated. The eco-composites were prepared by using Brabender Plasticiser EC Plus at temperature 160 °C and rotor speed 50 rpm. The results indicated that the tensile strength and elongation at break decreased with KH content increased. However, the modulus of elasticity increased with increasing of KH content. The morphology study of eco-composites exhibit poor interfacial adhesion between KH and LLDPE.


2015 ◽  
Vol 754-755 ◽  
pp. 192-196
Author(s):  
Salmah Husseinsyah ◽  
Chan Ming Yeng ◽  
Part Wei Ken

Polymer blending is one of the methods used to improve some insufficient properties of conventional polymers. The objective of this work was to study the effectiveness of CR content on the tensile properties and morphology study of recycled polypropylene (rPP)/ chloroprene rubber (CR) blends. The results indicated that the tensile strength and modulus of elasticity of rPP/CR blends decreased, however elongation at break increased as increasing CR content. The morphology study of rPP/CR blends showed the incompatibility between rPP and CR with the detachment of CR particles and CR particles pulled out from rPP surface.


2015 ◽  
Vol 754-755 ◽  
pp. 176-180 ◽  
Author(s):  
Ramyah Kalai Chelvie Pani Sellivam ◽  
Salmah Husseinsyah ◽  
Teh Pei Leng ◽  
Marliza Mosthapa Zakaria ◽  
Hanafi Ismail

Soy protein isolate (SPI)/kapok husk (KH) based biofilms were prepared by casting method. The effect of phthalic anhydride (PA) content on tensile properties and morphology were studied. The PA was use as a crosslink agent. It was found that the increasing PA content have increased the tensile strength and modulus of elasticity of biofilms, whereas the elongation at break decreased. At 1.5 % of PA showed the highest tensile strength and modulus of elasticity of crosslink biofilms. The morphology study indicates the crosslinking with PA improved the interfacial interaction between KH and SPI matrix.


2013 ◽  
Vol 747 ◽  
pp. 645-648 ◽  
Author(s):  
Koay Seong Chun ◽  
Salmah Husseinsyah ◽  
Hakimah Osman

Polypropylene/Cocoa Pod Husk (PP/CPH) biocomposites with different maleated polypropylene (MAPP) content were prepared via melt blending process using Brabender Plastrograph mixer. The tensile strength and tensile modulus of PP/CPH biocomposites increased with increasing of MAPP content. The PP/CPH biocomposites with 5 phr of MAPP showed the optimum improvement on tensile properties. However, the increased of MAPP content reduced the elongation at break of PP/CPH biocomposites. At 5 phr of MAPP content, PP/CPH biocomposites showed lowest elongation at break. Scanning electron microscope confirms the PP/CPH biocomposites with MAPP have better filler-matrix interaction and adhesion due to the effect of MAPP.


2018 ◽  
Vol 34 ◽  
pp. 01030 ◽  
Author(s):  
Indra Surya ◽  
Syahrul Fauzi Siregar ◽  
Hanafi Ismail

Effects of alkanolamide (ALK) addition on cure characteristics, swelling behaviour and tensile properties of silica-filled natural rubber (NR)/chloroprene rubber (CR) blends were investigated. The ALK was synthesized from Refined Bleached Deodorized Palm Stearin (RBDPS) and diethanolamine, and incorporated into the silica-filled NR/CR blends as a non-toxic rubber additive. The ALK loadings were 0.0, 1.0, 3.0, 5.0 and 7.0 phr. It was found that the ALK exhibited shorter scorch and cure times and higher elongation at break of the silica-filled NR/CR blends. The ALK also exhibited higher torque differences, tensile modulus and tensile strength at a 1.0 phr of ALK loading and then decreased with further increases in the ALK loading. The swelling measurement proved that the 1.0 phr loading of ALK caused the highest degree in crosslink density of the silica-filled NR/CR blends.


2013 ◽  
Vol 747 ◽  
pp. 649-652 ◽  
Author(s):  
Chan Ming Yeng ◽  
Husseinsyah Salmah ◽  
Sung Ting Sam

Recently, there has been renews interest in chitosan as materials in producing of biocomposite films. The chitosan (CS)/corn cob (CC) biocomposite films were prepared by solvent casting method. The effect of CC content on tensile properties of CS/CC biocomposite films was studied. The tensile strength and elongation at break of CS/CC biocomposite films decreased as increasing of CC content. However, the increasing of CC content was increased the tensile modulus of CS/CC biocomposite films. Scanning electron microscopy (SEM) was indicated that the deceasing of tensile properties was due to the poor interfacial adhesion between CC filler and CS matrix.


2013 ◽  
Vol 411-414 ◽  
pp. 2993-2996
Author(s):  
Yu Pu Deng ◽  
Lin Xue Du ◽  
Xi Hong Li ◽  
Xia Liu ◽  
Hai Jiao Liu

The novel packaging was synthesised by coating polyvinyl chloride (PVC) film with Polyvinylamine/Polyvinyl alcohol (PVAm/PVA) mixture which can effectively inhibit the migration of DOP in this paper. The effect of PVAm/PVA mixture on inhibiting DOP migration was detected via extraction tests. The results showed that the novel packaging significantly reduced the migration rate of DOP compared with the control (PVC film). After 24h extracted by hexane 40% PVAm in mixture being coated on PVC had the lowest migration rate (6.20%) among the samples, while 7.60% is the migration rate of control sample. Tensile properties analysis indicated the elongation at break and tensile strength of samples coating PVAm/PVA higher than control sample. The thermogravimetric analysis demonstrated that the PVAm/PVA mixed solution can deduce thermogravimetric rate. Therefore, coating PVC with PVAm/PVA mixture is an effective approach to suppress the migration of DOP.


2017 ◽  
Vol 50 (6) ◽  
pp. 491-500 ◽  
Author(s):  
Sajjad Daneshpayeh ◽  
Amir Tarighat ◽  
Faramarz Ashenai Ghasemi ◽  
Mohammad Sadegh Bagheri

The object of this work is to study and predict the tensile properties (tensile strength, elastic modulus, and elongation at break) of ternary nanocomposites based on epoxy/glass fiber/nanosilica using the fuzzy logic (FL). Two factors in three levels including glass fiber at 0, 5, and 10 wt% and nanosilica at 0, 0.5, and 1 wt% were chosen for adding to an epoxy matrix. From FL surfaces, it was found that the glass fiber content had a main role in the tensile properties of nanocomposites. The high levels of glass fiber content led to a significant increase in the elastic modulus and generally, the presence of glass fiber decreased the tensile strength and elongation at break. Also, addition of the nanosilica content resulted in an increased elastic modulus but decreased the elongation at break of nanocomposites. Finally, an FL model was obtained for each tensile property.


2008 ◽  
Vol 2008 ◽  
pp. 1-9 ◽  
Author(s):  
Joe-Lahai Sormana ◽  
Santanu Chattopadhyay ◽  
J. Carson Meredith

Nanocomposites based on segmented poly(urethane urea) were prepared by reacting a poly(diisocyanate) with diamine-modified Laponite-RD nanoparticles that served as a chain extender. The nanocomposites were prepared at a constantNH2to NCO mole ratio of 0.95, while varying the fraction of diamine-modified Laponite relative to the free diamine chain extender. Compared to neat poly(urethane urea), all nanocomposites showed increased tensile strength and elongation at break. As Laponite loading increased, tensile properties passed through a maximum at a particle concentration of 1 mass%, at which a 300% increase in tensile strength and 40% increase in elongation at break were observed. A maximum in urea and urethane hard-domain melting endotherms was also observed at this Laponite loading. Optimal mechanical and thermal properties coincided with a minimum in the size of the inorganic Laponite phase. Nanocomposites containing diamine-modified Laponite had higher tensile strengths than those with nonreactive monoamine-modified Laponite or diamine-modified Cloisite.


Sign in / Sign up

Export Citation Format

Share Document