A fuzzy logic model for prediction of tensile properties of epoxy/glass fiber/silica nanocomposites

2017 ◽  
Vol 50 (6) ◽  
pp. 491-500 ◽  
Author(s):  
Sajjad Daneshpayeh ◽  
Amir Tarighat ◽  
Faramarz Ashenai Ghasemi ◽  
Mohammad Sadegh Bagheri

The object of this work is to study and predict the tensile properties (tensile strength, elastic modulus, and elongation at break) of ternary nanocomposites based on epoxy/glass fiber/nanosilica using the fuzzy logic (FL). Two factors in three levels including glass fiber at 0, 5, and 10 wt% and nanosilica at 0, 0.5, and 1 wt% were chosen for adding to an epoxy matrix. From FL surfaces, it was found that the glass fiber content had a main role in the tensile properties of nanocomposites. The high levels of glass fiber content led to a significant increase in the elastic modulus and generally, the presence of glass fiber decreased the tensile strength and elongation at break. Also, addition of the nanosilica content resulted in an increased elastic modulus but decreased the elongation at break of nanocomposites. Finally, an FL model was obtained for each tensile property.

2020 ◽  
pp. 009524431989728
Author(s):  
Sajjad Daneshpayeh ◽  
Faramarz Ashenai Ghasemi ◽  
Shahnoosh Masoumi ◽  
Meysam Nouri Niyaraki

The goal of the present study is to investigate and predict the mechanical properties, including impact strength, elastic modulus, and elongation-at-break of quaternary nanocomposites based on polypropylene (PP)/ethylene–propylene–diene monomer (EPDM)/glass fiber (GL)/graphene nanosheets (GPn) by fuzzy logic. Three parameters in different levels, including EPDM, GL, and GPn, were chosen for combination with a PP matrix. The fuzzy logic surfaces showed that the EPDM rubber and GPn had the main role in the elastic modulus of nanocomposites. The high levels of EPDM content resulted in a considerable increase in impact strength and, generally, the presence of EPDM had no effect on elongation-at-break.


2011 ◽  
Vol 299-300 ◽  
pp. 460-465 ◽  
Author(s):  
Li Zhang ◽  
Xiu Ping Dong ◽  
Hao Chen

By designing different formulations of composites and adopting optimized technology including extrusion and molding, the different composites with various content microcapsules were prepared. The results of the tensile tests show that with the increasing content of self-healing microcapsules in the glass fiber reinforced nylon composites, the mechanical properties of the composites will change, i.e. tensile strength, elastic modulus will decrease. But there is little effect on the mechanical properties of the composite gears if the content of self-healing microcapsules is less than 3.5%, and the technology of self-healing microcapsules used in the polymer composite gear is feasible.


2019 ◽  
Vol 26 (1) ◽  
pp. 83-87 ◽  
Author(s):  
Yubo TAO ◽  
Peng LI ◽  
Ling PAN

Open source 3D printers (OS3DPs) have become increasingly more widespread in recent years because of their ease of use and budget friendliness, with the majority being fused deposition modeling (FDM) printers. However, due to natural deficiencies of the FDM printing methodology, different printing parameters can cause various properties of printed parts. To obtain printed polylactic acid (PLA) parts with improved tensile properties, a tension model of the part and an orthogonal experiment scheme were constructed in this paper. The effects of three printing parameters (layer height, orientation angle (OA) of the part, and print speed) on tensile properties (elastic modulus, tensile strength, and elongation at break) were investigated. The results demonstrated that the printing parameters affected the tensile properties of PLA parts. Larger layer height and lower print speed contributed to the improvement of tensile strength. The OA of the part had the greatest effect on the parts’ elastic modulus and elongation at break among the three parameters. Both layer height and OA of the part affected part tensile strength significantly. In this research, layer height of 0.2 mm and print speed of 20 ~ 30 mm/s are found to be the optimal printing parameters. Adjusting the OA of the part can provide targeted tensile properties, and the parts with the OA of 45° resulted in the lowest tensile strength because the tensile force is only held by fibers parallel to the force orientation instead of all fibers.


2015 ◽  
Vol 799-800 ◽  
pp. 115-119 ◽  
Author(s):  
Anika Zafiah M. Rus ◽  
Nur Munirah Abdullah ◽  
M.F.L. Abdullah ◽  
M. Izzul Faiz Idris

Graphite reinforced bio-based epoxy composites with different particulate fractions of graphite were investigated for mechanical properties such as tensile strength, elastic modulus and elongation at break. The graphite content was varied from 5 wt.%, 10 wt.%, 15 wt.%, 20 wt.%, 25 wt.%, 30 wt.% by weight percent in the composites. The results showed that the mechanical properties of the composites mainly depend on dispersion condition of the treated graphite filler, aggregate structure and strong interfacial bonding between treated graphite in the bio-based epoxy matrix. The composites showed improved tensile strength and elastic modulus with increase treated graphite weight loading. This also revealed the composites with increasing filler content was decreasing the elongation at break.


2013 ◽  
Vol 747 ◽  
pp. 645-648 ◽  
Author(s):  
Koay Seong Chun ◽  
Salmah Husseinsyah ◽  
Hakimah Osman

Polypropylene/Cocoa Pod Husk (PP/CPH) biocomposites with different maleated polypropylene (MAPP) content were prepared via melt blending process using Brabender Plastrograph mixer. The tensile strength and tensile modulus of PP/CPH biocomposites increased with increasing of MAPP content. The PP/CPH biocomposites with 5 phr of MAPP showed the optimum improvement on tensile properties. However, the increased of MAPP content reduced the elongation at break of PP/CPH biocomposites. At 5 phr of MAPP content, PP/CPH biocomposites showed lowest elongation at break. Scanning electron microscope confirms the PP/CPH biocomposites with MAPP have better filler-matrix interaction and adhesion due to the effect of MAPP.


2018 ◽  
Vol 34 ◽  
pp. 01030 ◽  
Author(s):  
Indra Surya ◽  
Syahrul Fauzi Siregar ◽  
Hanafi Ismail

Effects of alkanolamide (ALK) addition on cure characteristics, swelling behaviour and tensile properties of silica-filled natural rubber (NR)/chloroprene rubber (CR) blends were investigated. The ALK was synthesized from Refined Bleached Deodorized Palm Stearin (RBDPS) and diethanolamine, and incorporated into the silica-filled NR/CR blends as a non-toxic rubber additive. The ALK loadings were 0.0, 1.0, 3.0, 5.0 and 7.0 phr. It was found that the ALK exhibited shorter scorch and cure times and higher elongation at break of the silica-filled NR/CR blends. The ALK also exhibited higher torque differences, tensile modulus and tensile strength at a 1.0 phr of ALK loading and then decreased with further increases in the ALK loading. The swelling measurement proved that the 1.0 phr loading of ALK caused the highest degree in crosslink density of the silica-filled NR/CR blends.


Author(s):  
Oscar Palacio ◽  
Emilio Delgado

The effect of the addition of maleated polyethylene (MAPE) to compounds of natural rubber (NR) and Teline monspessulana flour (TMF) previously mercerized was investigated. Two factors were analyzed: A. concentration of MAPE with five levels 2; 4; 6; 8; 10 phr (parts per hundred rubber), B. concentration of TMF with two levels 25 and 40 phr. The effect of MAPE on compatibility between NR and HTM was evaluated by tensile testing the compounds. The mixing was performed in a laboratory scale mill. The test tubes were obtained by cutting or die-cutting crosslinked peroxide sheets, these were obtained during the compression molding process. Analysis indicate that the MAPE coupling agent improved the compatibility between HTM and NR, this effect was evidenced by the values of tensile strength and elongation at break. However, the gel content determination indicates that the addition of 10 phr of MAPE crosslinking decreases due to competition with coupling reaction MAPE - HTM.


2021 ◽  
Vol 13 (9) ◽  
pp. 1812-1819
Author(s):  
Na-Na Yang ◽  
Hao-Rui Liu ◽  
Ning Mi ◽  
Qi Zhou ◽  
Li-Qun He ◽  
...  

Stereolithography (SLA)-manufactured parts behave with anisotropic properties due to the varying interface orientations generated by the layer-based manufacturing process. Part build orientation is a very important factor of anisotropic mechanical properties. In this paper, the build orientation experiment was designed to study the anisotropic behaviour of the mechanical properties of the SLA parts based on the orientation relationship between the force and the layer. The results show that there are obvious brittle characteristics on the fracture surface of the specimens and microcracks perpendicular to the direction of the layer distributed on the side of the fracture. The mechanical properties under brittle fracture have different degrees of sensitivity to the build orientation. Among all the build orientations, whether a specimen is built flat or on an edge shows obvious difference in tensile strength, and the relative range distribution reaches 35%. The changes in elastic modulus and the elongation at break are the most obvious in different angles relative to the XY plane, and the relative range distribution reaches 62% and 56% respectively. In all the build orientations designed, the tensile strength is the largest when it is placed on the edge at 0° with Y-axis in the XY plane, the elastic modulus is the largest when it was placed vertically, and the elongation at break is the largest when it is placed flat at 45° with Y-axis in the XY plane.


2021 ◽  
Vol 904 ◽  
pp. 232-236
Author(s):  
Thapanee Wongpreedee ◽  
Chana Prapruddivongs ◽  
Nanthaya Kengkhetkit

Banana fiber (BF) was utilized as a reinforcing filler for natural rubber (NR). BF/NR composites containing banana fiber contents of 5, 10, and 15 parts per hundred parts of rubber (phr) were mixed on a two-roll mill machine. The hardness, tensile properties of BF/NR composites were studied. It was found that the hardness and moduli of BF/NR composites are higher than that of NR. Despite tensile strength and strain at break of BF/NR composite lower than NR. Moreover, hardness and moduli of BF/NR composites increased, while tensile strength and strain at break decreased with the increase in banana fiber content. Thus, banana fiber exhibited improvement in the stiffness significantly of NR composites


Author(s):  
Asma Ul Hosna Meem ◽  
Kyle Rudolph ◽  
Allyson Cox ◽  
Austin Andwan ◽  
Timothy Osborn ◽  
...  

Abstract Digital light processing (DLP) is an emerging vatphotopolymerization-based 3D-printing technology where full layers of photosensitive resin are irradiated and cured with projected ultraviolet (UV) light to create a three-dimensional part layer-by-layer. Recent breakthroughs in polymer chemistry have led to a growing number of UV-curable elastomeric photoresins developed exclusively for vat photopolymerization additive manufacturing (AM). Coupled with the practical manufacturing advantages of DLP AM (e.g., industry-leading print speeds and sub-micron-level print resolution), these novel elastomeric photoresins are compelling candidates for emerging applications requiring extreme flexibility, stretchability, conformability, and mechanically-tunable stiffness (e.g., soft robotic actuators and stretchable electronics). To advance the role of DLP AM in these novel and promising technological spaces, a fundamental understanding of the impact of DLP manufacturing process parameters on mechanical properties is requisite. This paper highlights our recent efforts to explore the process-property relationship for ELAST-BLK 10, a new commercially-available UV-curable elastomer for DLP AM. A full factorial design of experiments is used to investigate the effect of build orientation and layer thickness on the quasi-static tensile properties (i.e., small-strain elastic modulus, ultimate tensile strength, and elongation at fracture) of ELAST-BLK 10. Statistical results, based on a general linear model via ANOVA methods, indicate that specimens with a flat build orientation exhibit the highest elastic modulus, ultimate tensile strength, and elongation at fracture, likely due to a larger surface area that enhances crosslink density during the curing process. Several popular hyperelastic constitutive models (e.g., Mooney-Rivlin, Yeoh, and Gent) are calibrated to our quasi-static tensile data to facilitate component-level predictive analyses (e.g., finite-element modeling) of soft robotic actuators and other emerging soft-matter applications.


Sign in / Sign up

Export Citation Format

Share Document